RESEARCH PAPER
Molecular phylogeny and estimated time of divergence in the Central European Melanopsidae: Melanopsis, Fagotia and Holandriana (Mollusca: Gastropoda: Cerithioidea)
 
More details
Hide details
1
Department of Malacology, Institute of Zoology, Jagiellonian University, Cracow, Poland
Submission date: 2009-04-25
Acceptance date: 2009-05-20
Publication date: 2020-05-27
 
Folia Malacol. 2009;17(1):1–9
 
KEYWORDS
ABSTRACT
Three European melanopsids: Melanopsis parreyssii (Philippi, 1847) from Ochiul Mare (Romania), Fagotia acicularis (A. Férussac, 1828) from a spring near Crisul Negru (Romania), and Holandriana holandri (C. Pfeiffer, 1828) from Lake Skutari (Montenegro), as well as Melanopsis costata Oliver, 1804 from Iraq, are considered is this paper. Eight partial sequences of ribosomal 18S, and seven of mitochondrial COI were analysed. Maximum likelihood trees based on 18S confirm the placement of the Melanopsidae within the Cerithioidea, as well as the monophyly of the latter group. The COI-based tree confirms the placement of the Melanopsidae within the Cerithioidea, but does not confirm the monophyly of either Melanopsidae or Cerithioidea. The results suggest that Fagotia should be synonymised withMelanopsis, Holandriana is a distinct genus, and Melanopsis costata is not congeneric with M. parreyssii. The application of molecular clock, with one point calibration for COI for the Hydrobiidae, estimated the times of divergence as 2.53±0.56 Mya for M. parreyssii and F. acicularis, 9.49±1.67 Mya for M. parreyssii and H. holandri, and 10.71±1.88 Mya for F. acicularis and H. holandrii. 2.5 Mya coincides with the beginning of the glacial period in Europe, and 8-12 Mya was the time when Lake Pannon covered the largest area.
 
REFERENCES (61)
1.
Avise J. C. 2000. Phylogeography. The history and formation of species. Harvard University Press, Cambridge, Massachusetts and London, England.
 
2.
Bieler R. 1998. Non-marine Cerithioidea - Recent work on Thiaridae and Melanopsidae. Veliger 41: 371-372.
 
3.
Colgan D. J., Ponder W. F., Beacham E., Macaranas J. M. 2003. Molecular phylogenetic studies on Gastropoda based on six gene segments representing coding or non-coding and mitochondrial or nuclear DNA. Moll. Res. 23: 123-148. https://doi.org/10.1071/MR0300....
 
4.
Colgan D. J., Ponder W. F., Beacham E., Macaranas J. M. 2007. Molecular phylogenetics of Caenogastropoda (Gastropoda: Mollusca). Mol. Phyl. Evol. 42: 717-737. https://doi.org/10.1016/j.ympe....
 
5.
Collin R. 2003. The utility of morphological characters in gastropod phylogenetics: an example from the Calyptraeidae. Biol. J. Linn. Soc. 78: 541-593. https://doi.org/10.1046/j.0024....
 
6.
Davis G. M., Wilke T., Spolsky C., Qiu C.-P., Qiu D.-C., Xia M.-Y., Zhang Y., Rosenberg G. 1998. Cytochrome oxidase I-based phylogenetic relationships among the Pomatiopsidae, Hydrobiidae, Rissoidae and Truncatellidae (Gastropoda: Caenogastropoda: Rissoacea). Malacologia 40: 251-266.
 
7.
Falniowski A. 2003. Metody numeryczne w taksonomii. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków.
 
8.
Falniowski A., Heller J., Mazan-Mamczarz K., Szarowska M. 2002a. Genetic structure of the closely related species of Melanopsis (Gastropoda: Cerithiacea) in Israel. J. Zool. Syst. Evol. Res. 40: 92-104. https://doi.org/10.1046/j.1439....
 
9.
Falniowski A., Heller J., Szarowska M., Mazan-Mamczarz K. 2002b. Allozymic taxonomy within the genus Melanopsis (Gastropoda: Cerithiacea) in Israel: a case in which slight differences are congruent. Malacologia 44: 307-324.
 
10.
Falniowski A., Szarowska M., Grzmil P. 2007. Daphniola Radoman, 1973 (Gastropoda: Hydrobiidae): shell biometry, mtDNA, and the Pliocene flooding. J. Nat. Hist. 41: 2301-2311. https://doi.org/10.1080/002229....
 
11.
Falniowski A., Szarowska M., Sirbu I., Hillebrand A., Baciu M. 2008. Heleobia dobrogica (Grossu & Negrea, 1989) (Gastropoda: Rissooidea: Cochliopidae) and the estimated time of its isolation in a continental analogue of hydrothermal vents. Moll. Res. 28: 165-170.
 
12.
Folmer O., Black M., Hoeh W., Lutz R. A., Vrijenhoek R.C. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3: 294-299.
 
13.
Gaut B. S., Lewis P. O. 1995. Success of maximum likelihood phylogeny inference in the four-taxon case. Mol. Biol. Evol. 12: 152-162. https://doi.org/10.1093/oxford....
 
14.
Geary D. H., Magyar I., Müller P. 2000. Ancient Lake Pannon and its Endemic Molluscan Fauna (Central Europe; Mio-Pliocene). Adv. Ecol. Res. 31: 463-482. https://doi.org/10.1016/S0065-....
 
15.
Giribet G., Okusu A., Lindgren A. R., Huff S. W., Schrödl M., Nishiguchi M. K. 2006. Evidence for a clade composed of molluscs with serially repeated structures: Monoplacophora are related to chitons. Proc. Nat. Acad. Sci. U.S.A. 103: 7723-7728. https://doi.org/10.1073/pnas.0....
 
16.
Glöer P. 2002. Die Süsswassergastropoden Nord- und Mitteleuropas, Bestimmungsschlüssel, Lebensweise, Verbreitung. Die Tierwelt Deutschlands 73, ConchBooks, Hackenheim.
 
17.
Grossu A.V. 1986. Gastropoda Romaniae, vol. 1; I. Caracterele generale, istoricul şi biologia gastropodelor; II. Subclasa Prosobranchia şi Opistobranchia. Ed. Litera, Bucureşti.
 
18.
Haase M., Marshall B., Hogg I. 2007. Disentangling causes of disjunction on the South Island of New Zealand: the Alpine fault hypothesis of vicariance revisited. Biol. J. Linn. Soc. 91, 361-374. https://doi.org/10.1111/j.1095....
 
19.
Hall T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
 
20.
Harasewych M. G., Adamkewicz S. L., Blade J. A., Saudek D., Spriggs T., Bult C. J. 1997. Phylogeny and relationships of pleurotomariid gastropods (Mollusca: Gastropoda) and assessment based on partial 18S rDNA and cytochrome c oxidase I sequences. Mol. Mar. Biol. Biotechnol. 6: 1-20.
 
21.
Harasewych M. G., Adamkewicz S. L., Plassmeyer M., Gillevet P. M. 1998. Phylogenetic relationships of the lower Caenogastropoda (Mollusca, Gastropoda, Architaenioglossa, Campaniloidea, Cerithioidea) as determined by partial 18S rDNA sequences. Zool. Scripta 27: 361-372. https://doi.org/10.1111/j.1463....
 
22.
Harzhauser M., Mandic O. 2008. Neogene lake systems of Central and South-Eastern Europe: Faunal diversity, gradients and interrelations. Palaeo 260: 417-434. https://doi.org/10.1016/j.pala....
 
23.
Hausdorf B., Röpstorf P., Riedel F. 2003. Relationships and origin of endemic Lake Baikal gastropods (Ceanogastropoda: Rissooidea) based on mitochondrial DNA sequences. Mol. Phyl. Evol. 26: 435-443. https://doi.org/10.1016/S1055-....
 
24.
Hillis D. M., Mable B. K., Moritz C. 1996. Applications of molecular systematics: The state of the field and a look to the future. In: Hillis D. M., Moritz C., Mable B. K. (eds). Molecular Systematics. Second edition, Sinauer Associates, Inc., Sunderland, Massachusetts, pp. 515-543.
 
25.
Hodgson A. N., Heller J. 1997. Spermatozoon structure and spermiogenesis in four species of Melanopsis (Gastropoda, Prosobranchia, Cerithioidea) from Israel. Invertebr. Reprod. Dev. 37: 185-200. https://doi.org/10.1080/079242....
 
26.
Houbrick R. S. 1988. Cerithioidean phylogeny. Malac. Rev., Suppl. 4: 88-128.
 
27.
Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF0173....
 
28.
Krijgsman W., Hilgen F. J., Raffi I., Sierro F. J., Wilson D. S. 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature 400: 652-655. https://doi.org/10.1038/23231.
 
29.
Ložek V. 1956. Klič československých mekkýšů. Vydavatelstwo Slovenskej Akademie Vied, Bratislava.
 
30.
Lydeard Ch., Holznagel W. E., Glaubrecht M., Ponder W. F. 2002. Molecular phylogeny of a circum-global, diverse gastropod superfamily (Cerithioidea: Mollusca: Caenogastropoda): pushing the deepest phylogenetic limits of mitochondrial LSU rDNA sequences. Mol. Phyl. Evol. 22: 399-406. https://doi.org/10.1006/mpev.2....
 
31.
Maddison D. R., Maddison W. P. 2002. MACCLADE 4.05. Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts.
 
32.
Miura O., Torchin M. E., Kuris A. M., Hechinger R. F., Chiba S. 2006. Introduced cryptic species of parasites exhibit different invasion pathways. Proc. Nat. Acad. Sci. U.S.A. 103: 19818-19823. https://doi.org/10.1073/pnas.0....
 
33.
Nei M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York. https://doi.org/10.7312/nei-92....
 
34.
Nei M. 1996. Phylogenetic analysis in molecular evolutionary genetics. Ann. Rev. Genetics 30: 371-403. https://doi.org/10.1146/annure....
 
35.
Nei M., Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, Oxford UK and New York.
 
36.
Nei M., Kumar S., Takahashi K. 1998. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc. Nat. Acad. Sci. U.S.A. 76: 5269-5273.
 
37.
Palumbi S. R. 1996. Nucleic Acids II: The Polymerase Chain Reaction. In: Hillis D. M., Moritz C., Mable B. K. (eds). Molecular Systematics. Second Edition. Sinauer Associates, Inc., Sunderland, Massachusetts, pp. 205-247.
 
38.
Ponder W. F., Warén A. 1988. Appendix: Classification of the Caenogastropoda and Heterostropha - a list of the family-group names and higher taxa. Malacol. Rev., Suppl. 4: 288 - 326.
 
39.
Posada D. 2003. Selecting models of evolution. In: Salemi M., Vandamme A.-M. (eds). The Phylogenetic Handbook. A Practical Approach to DNA and Protein Phylogeny. Cambridge University Press, Cambridge, UK, pp. 256-282.
 
40.
Posada D., Buckley T. R. 2004. Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53: 793-808. https://doi.org/10.1080/106351....
 
41.
Posada D., Crandall K. A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818. https://doi.org/10.1093/bioinf....
 
42.
Rögl F. 1998. Palaeogeographic Considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene). Ann. Nathist. Mus. Wien 99A: 279-310.
 
43.
Rögl F. 1999. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica 50: 339-349.
 
44.
Spolsky C., Davis G. M., Zhang Y. 1996. Sequencing methodology and phylogenetic analysis: cytochrome b gene sequence reveals significant diversity in Chinese populations of Oncomelania (Gastropoda: Pomatiopsidae). Malacologia 38: 213-221.
 
45.
Stanley S. M. 1999. Earth System History. W. H. Freeman & Co., New York - Basingstoke.
 
46.
Swofford D. L. 2002. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates Inc., Sunderland, Massachusetts.
 
47.
Swofford D. L., Olsen G. J., Waddell P. J., Hillis D. M. 1996. Phylogenetic inference. In: Hillis D. M., Moritz C., Mable B. K. (eds). Molecular Systematics. Second edition. Sinauer Associates, Inc., Sunderland, Massachusetts, pp. 407-514.
 
48.
Szarowska M. 2006. Molecular phylogeny, systematics and morphological character evolution in the Balkan Rissooidea (Caenogastropoda). Folia Malacol. 14: 99-168. https://doi.org/10.12657/folma....
 
49.
Szarowska M., Falniowski A., Riedel F., Wilke T. 2005. Phylogenetic relationships of the subfamily Pyrgulinae (Gastropoda: Caenogastropoda: Hydrobiidae) with emphasis on the genus Dianella Gude, 1913. Zootaxa 891: 1-32. https://doi.org/10.11646/zoota....
 
50.
Tajima F. 1993. Simple methods for testing molecular clock hypothesis. Genetics 135: 599-607.
 
51.
Takahashi K., Nei M. 2000. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution and maximum likelihood when a large number of sequences are used. Mol. Biol. Evol. 17: 1251-1258. https://doi.org/10.1093/oxford....
 
52.
Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev....
 
53.
Thiele J. 1929. Handbuch der systematischen Weichtierkunde. Erster Teil. Verlag von Gustav Fischer, Jena.
 
54.
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882. https://doi.org/10.1093/nar/25....
 
55.
Wilke T. 2003. Salenthydrobia gen. nov. (Rissooidea: Hydrobiidae): a potential relict of the Messinian salinity crisis. Zool. J. Linn. Soc. 137: 319-336. https://doi.org/10.1046/j.1096....
 
56.
Wilke T. 2004. How dependable is a non-local molecular clock? A reply to Hausdorf et al. (2003). Mol. Phyl. Evol. 30: 835-840. https://doi.org/10.1016/j.ympe....
 
57.
Wilke T., Davis G. M., Falniowski A., Giusti F., Bodon M., Szarowska M. 2001. Molecular systematics of hydrobiidae (Mollusca: Gastropoda: Rissooidea): testing monophyly and phylogenetic relationships. Proc. Acad. Nat. Sci. Philad. 151: 1-21. https://doi.org/10.1635/0097-3....
 
58.
Williams S.T., Reid D.G. 2004. Speciation and diversity on tropical rocky shores: a global phylogeny of snails of the genus Echinolittorina. Evolution 58: 2227-2251. https://doi.org/10.1111/j.0014....
 
59.
Winnepenninckx B., Steiner G., Backeljau T., De Wachter R. 1998. Details of gastropod phylogeny inferred from 18S rRNA sequences. Mol. Phyl. Evol. 9: 55-63. https://doi.org/10.1006/mpev.1....
 
60.
Yang Z. 1997. How often do wrong models produce better phylogenies? Mol. Biol. Evol. 14: 105-108. https://doi.org/10.1093/oxford....
 
61.
Yang Z., Goldman N., Friday A. 1995. Maximum likelihood trees from DNA sequences: A peculiar statistical estimation problem. Syst. Biol. 44: 384-399. https://doi.org/10.2307/241359....
 
 
CITATIONS (8):
1.
Population bottleneck triggering millennial-scale morphospace shifts in endemic thermal-spring melanopsids
Thomas Neubauer, Mathias Harzhauser, Elisavet Georgopoulou, Claudia Wrozyna
Palaeogeography, Palaeoclimatology, Palaeoecology
 
2.
Paleobiogeography and historical biogeography of the non-marine caenogastropod family Melanopsidae
Thomas Neubauer, Mathias Harzhauser, Oleg Mandic, Elisavet Georgopoulou, Andreas Kroh
Palaeogeography, Palaeoclimatology, Palaeoecology
 
3.
Divergence Preceding Island Formation Among Aegean Insular Populations of the Freshwater Snail GenusPseudorientalia(Caenogastropoda: Truncatelloidea)
Magdalena Szarowska, Sebastian Hofman, Artur Osikowski, Andrzej Falniowski
Zoological Science
 
4.
Unparalleled disjunction or unexpected relationships? Molecular phylogeny and biogeography of Melanopsidae (Caenogastropoda: Cerithioidea), with the description of a new family and a new genus from the ancient continent Zealandia
Marco Neiber, Matthias Glaubrecht
Cladistics
 
5.
Body size, longevity, and growth rate in Lake Pannon melanopsid gastropods and their predecessors
Dana Geary, Erik Hoffmann, Imre Magyar, James Freiheit, Dianna Padilla
Paleobiology
 
6.
Biological Resources of Water
Pál Sümegi, Sándor Gulyás, Dávid Molnár, Katalin Náfrádi, Tünde Törőcsik, Balázs Sümegi, Péter Müller, Gábor Szilágyi, Zoltán Varga
 
7.
Melanopsidae (Caenogastropoda: Cerithioidea) from the eastern Mediterranean: another case of morphostatic speciation
Andrzej Falniowski, Joseph Heller, Robert Cameron, Beata Pokryszko, Artur Osikowski, Aleksandra Rysiewska, Sebastian Hofman
Zoological Journal of the Linnean Society
 
8.
Is Nymphaea lotus var. thermalis a Tertiary relict in Europe?
Levente Laczkó, Balázs Lukács, Attila Mesterházy, V. Molnár, Gábor Sramkó
Aquatic Botany
 
eISSN:2300-7125
ISSN:1506-7629