The effect of magnetic field on farmed populations of Helix aspersa O. F. Müller, 1774
More details
Hide details
Institute of Animal Husbandry, State Research Institute in Kraków, Poland
Andrzej Frycz Modrzewski Kraków University, Poland
Agricultural University of Cracow, Poland
Submission date: 2009-10-06
Acceptance date: 2010-11-24
Publication date: 2011-03-11
Folia Malacol. 2011;19(1):41–49
In order to assess the effect of alternating electromagnetic and direct magnetic field on adult Helix aspersa O. F. Müller and their eggs, adults and eggs of H. aspersa maxima Taylor and H. aspersa aspersa O. F. Müller were exposed to such fields with different parameters, and the following life cycle traits were observed: condition of hibernating adults, their survival rate during hibernation and reproduction, egg mass, hatching success, growth rate of hatchlings and body mass of next generation adults. Adults were exposed to sinusoidal, alternating electromagnetic fields of 50 Hz, 100 Hz and 200 μT, and magnetic induction of 50 Hz, as well as afield of 175 μT and 10-1000 Hz (repetition period 80 minutes). Egg batches were exposed to direct magneticfields of magnetic induction 5 μT and 10 μT and alternating electromagnetic fields of analogous inductionand frequency of 50 Hz. The effects varied depending on the parameters of the fields, subspecies and life cyclestage. Adult H. aspersa maxima was more sensitive to the changes in characteristics of electromagnetic fieldthan H. aspersa aspersa, but the two subspecies showed a similar reaction to exposing their eggs to direct or alternating magnetic field. Probably direct field had a greater selection effect compared to alternating field, removing weaker genotypes at embryonic stage; this resulted in a greater mean body mass of the next generation adults. The results are preliminary; further studies, with further modifications of parameters of the fields applied are necessary.
Albuquerque de Matos R. M. 1984a. Genetics of shell ground colour in Helix aspersa. I. Colour locus, uniform and their interaction. Heredity 53: 11-20.
Albuquerque de Matos R. M. 1984b. Genetics of shell ground colour in Helix aspersa. II. Albino, its mutations and interactions. Heredity 53: 21-35.
Bloom S. 1970. Spontaneous rhythmic contraction of separated heart cells. Science 167: 1727-1729.
Chevallier H. 1977. La variabilite de l'Escargot Petit-Gris Helix aspersa Müller. Bull. Mus. Nat. Hist. Nat., Zool. 341: 425-436.
Dupont-Nivet M., Guiller A., Bonnet J.-C. 1997a. Genetic and environmental variability of adult size in some stocks of the edible snail, Helix aspersa. J. Zool. 241: 757-765.
Dupont-Nivet M., Mallard J., Bonnet J.-C., Blanc J. M. 1997b. Quantitative genetics of growth traits in the edible snail, Helix aspersa Müller. Genet. Sel. Evol. 29: 571-587.
Formicki K., Bonisławska M., Jasiński M. 1997. Spatial orientation of trout (Salmo trutta L.) and rainbow trout (Oncorhynchus mykiss Walb.) embryos in natural and artificial magnetic field. Acta Ichthyol. Piscat. 27: 29-40.
Formicki K., Perkowski T. 1998. The effect of a magnetic field on the gas exchange in rainbow trout Oncorhynchus mykiss embryos (Salmonidae). Italian J. Zool. 65 (Suppl.): 475-477.
Formicki K., Sadowski M., Tański A., Korzelecka-Orkisz A., Winnicki A. 2004b. Behaviour of trout (Salmo trutta L.) larvae and fry in a constant magnetic field. J. Appl. Ichthyol. 20: 290-294.
Formicki K., Tański A., Sadowski M. 2004a. Effects of magnetic field on fyke net performance. J. Appl. Ichthyol. 20: 402-406.
Formicki K., Tański A., Sobociński A. 2001. A directional response of fish to changes in magnetic field in natural environment. Abstracts Tenth European Congress of Ichthyology, Prague, Czech Republic, 3-7 September 2001: 119.
Formicki K., Tański A., Winnicki A. 2002. Ukierunkowanie przestrzenne rozwijających się zarodków ryb w polu magnetycznym. Abstracts 28th Symposium of the Polish Society of Histo- and Cytochemists and the 3rd Polish Conference of the Developmental Biology Society, Międzyzdroje, 4-7 September 2002: 42.
Formicki K., Winnicki A. 1996. Effects of constant magnetic field on cardiac muscle activity in fish embryos. Publicaciones Especiales Instituto Espanol De Oceanografia 21: 287-292.
Gomot A. 1998. Biochemical composition of Helix aspersa: Influence of genetic and physiological factors. J. Moll. Stud. 64: 173-181.
Guiller A., Madec L., Daguzan J. 1994. Geographical pattern of differentiation in the landsnail Helix aspersa Müller (Gastropoda pulmonata). J. Moll. Stud. 60: 205-221.
Harary I. 1962. Heart cells in vitro. Scientific American 206: 141-152.
Ligaszewski M., Surówka K., Stekla J. 2009. The shell features of Cornu aspersum (synonym Helix aspersa) and Helix pomatia: Characteristic and comparison. Amer. Malac. Bull. 27: 173-181.
Łysak A., Ligaszewski M., Mach-Paluszkiewicz Z. 2008. Wpływ pola magnetycznego o różnych parametrach natężenia i częstotliwości na hodowlane populacje ślimaków Helix aspersa maxima i Helix aspersa aspersa. Streszczenia, XXIV Krajowe Seminarium Malakologiczne. Gdańsk-Gdynia, 2-4 kwietnia 2008: 39.
Perkowski T., Formicki K. 1997. Effects of constant magnetic fields on respiration of rainbow trout (Oncorhynchus mykiss Walb.) embryos. Acta Ichthiol. Piscat. 27: 41-56.
Smith T. E. Jr., Berndt W. O. 1964. The establishment of beating myocardial cells in longterm culture in fluid medium. Exp. Cell Res. 36: 179 - 191.
Winnicki A., Korzelecka-Orkisz A., Sobociński A., Tański A., Formicki K. 2004. Effects of the magnetic field on different forms of embryonic locomotor activity of Northern pike, Esox lucius L. Acta Ichthyol. Piscat. 34: 193-203.