MONTENEGROSPEUM PEŠIĆ ET GLÖER, 2013: A REPRESENTATIVE OF MOITESSIERIIDAE?

Andrzej Falniowski¹, Vladimir Pešić², Peter Glöer³

¹Department of Malacology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland (e-mail: andrzej.falniowski@uj.edu.pl)
²Department of Biology, Faculty of Sciences, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro
³Biodiversity Research Laboratory, Schulstraße 3, D-25491 Hetlingen, Germany

The paper is dedicated to the memory of JOZEF ŠTEFFEK (1952–2013), the famous Slovak zoologist and malacologist, partner in our joint research.

ABSTRACT: The paper deals with phylogenetic relationships of recently described Montenegrospeum bogici Pešić et Glöer, 2012 from central Bosnia. The female reproductive system was found to bear two receptacula seminis. Mitochondrial cytochrome oxidase subunit I and nuclear 18S rRNA gene partial sequences were used for the maximum likelihood phylogenetic inference. Morphological and molecular data are congruent: Montenegrospeum does not belong to the Moitessieriidae, and is phylogenetically remote from Bythiospeum; it belongs to the Hydrobiidae, subfamily Sadlerianinae, and its sister taxon is Dalmatinella Radoman, 1973 (bootstrap support 87%).

KEY WORDS: Truncatelloidea, Moitessieriidae, Sadlerianinae, female reproductive organs, COI, 18S rRNA, molecular phylogeny

INTRODUCTION

Pešić & Glöer (2012) described a new species of Bythiospeum Bourguignat, 1882: B. bogici Pešić et Glöer, 2012 from underground waters of the spring Taban, in the central part of Montenegro. Its description was based on empty shells. Later they (Pešić & Glöer 2013) collected live specimens, and described the lack of eyes and pigment, and the penis with a lobe at its medial part. They considered B. bogici as belonging to a new genus: Montenegrospeum Pešić et Glöer, 2013, still within the family Moitessieriidae Bourguignat, 1863. M. bogici is known from its type locality only (Pešić & Glöer 2013).

The aim of the present paper is to establish phylogenetic relationships of Montenegrospeum, applying two DNA fragments, and reconsidering morphological data.

MATERIAL AND METHODS

Four specimens of Montenegrospeum bogici from the spring Taban at Montenegro were used: two for morphology, and the other two for molecular work. Gastropods were dissected using a NIKON SMZ18 stereoscope microscope with dark field.

For DNA, foot tissue was hydrated in TE buffer (3 × 10 min.); then total genomic DNA was extracted with the SHERLOCK extracting kit (A&A Biotechnology), and the final product was dissolved in 20 μl TE buffer. The PCR reaction was performed with the following primers: LCO1490 (5’-GGTCAAACTTCAATCATAAAGATATTGG-3’) (Folmer et al. 1994) and COR722b (5’-TAACTTCAAGGGTGACAAAATAAATGTTG-3’) (Wilke & Davis 2000) for the
cytochrome oxidase subunit I (COI) mitochondrial gene and SWAM18SR1 (5'-GAATGGCTCATTAAATCAAGTGCAGGTTCCCT-3'), and SWAM18SR1 (5'-ATCC TCGTTAAAGGGTGAATGGCTCATTAAATCAAGTGCAGGTTCCCT-3') for the 18S ribosomal RNA gene (ATTWOOD et al. 2003). The PCR conditions were as follows: COI – initial denaturation step of 4 min at 94°C, followed by 35 cycles of 1 min at 94°C, 1 min at 55°C, 2 min at 72°C, and a final extension of 4 min at 72°C; 18S rRNA – initial denaturation step of 4 min at 94°C, followed by 40 cycles of 45 s at 94°C, 45 s at 51°C, 2 min at 72°C and, after all cycles were completed, an additional elongation step of 4 min at 72°C was performed. The total volume of each PCR reaction mixture was 50 μl. To check the quality of the PCR products 10 μl of the PCR product were ran on 1% agarose gel. The PCR products were purified using Clean-Up columns (A&A Biotechnology) and were then amplified in both directions (HILLS et al. 1996) using BigDye Terminator v3.1 (Applied Biosystems), following the manufacturer’s protocol and with the primers described above. The sequencing reaction products were purified using ExTerminator Columns (A&A Biotechnology); DNA sequences then underwent electrophoresis on an ABI Prism sequencer. The two sequences were deposited in GenBank (Table 1).

In the phylogeny reconstruction, we used 29 truncatelloid taxa sequences, and one of Rissoa from GenBank (Table 1). Seven of them, used as an out-

Table 1. Taxa used for phylogenetic analyses, with their GenBank Accession Numbers and references

<table>
<thead>
<tr>
<th>Species</th>
<th>18S GB#</th>
<th>COI GB#</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrioinsulana conovula (Frauenfeld, 1863)</td>
<td>AF367656</td>
<td>AF367628</td>
<td>Wilke et al. (2001)</td>
</tr>
<tr>
<td>Alzoniella finalina Giusti et Bodon, 1984</td>
<td>AF367686</td>
<td>AF367650</td>
<td>Wilke et al. (2001)</td>
</tr>
<tr>
<td>Avenionia brevis (Draparnaud, 1805)</td>
<td>AF367670</td>
<td>AF367638</td>
<td>Wilke et al. (2001)</td>
</tr>
<tr>
<td>Bithynia tentaculata (Linnaeus, 1758)</td>
<td>AF367675</td>
<td>AF367643</td>
<td>Wilke et al. (2001)</td>
</tr>
<tr>
<td>Boleana umbilicata (Kuščer, 1932)</td>
<td>JX982797</td>
<td>JX982795</td>
<td>FALNIOWSKI & SZAROWSKA (2012)</td>
</tr>
<tr>
<td>Bythinella austriaca (Frauenfeld, 1857)</td>
<td>AF212917</td>
<td>FJ545132</td>
<td>FALNIOWSKI et al. (2009)</td>
</tr>
<tr>
<td>Bythiospeum sp.</td>
<td>AF367664</td>
<td>AF367634</td>
<td>Wilke et al. (2001)</td>
</tr>
<tr>
<td>Dianella thiesseana (Kobelt, 1878)</td>
<td>AY676125</td>
<td>AY676127</td>
<td>SZAROWSKA et al. (2005)</td>
</tr>
<tr>
<td>Graecoarganiella parnassiana Falniowski et Szarowska, 2011</td>
<td>JN202341</td>
<td>JN202348</td>
<td>FALNIOWSKI & SZAROWSKA (2011)</td>
</tr>
<tr>
<td>Graziana alpestris (Frauenfeld, 1863)</td>
<td>AF367673</td>
<td>AF367641</td>
<td>Wilke et al. (2001)</td>
</tr>
<tr>
<td>Grossuana codreanui (Grossu, 1946)</td>
<td>EF061916</td>
<td>EF061919</td>
<td>SZAROWSKA et al. (2007)</td>
</tr>
<tr>
<td>Haussenia tellinii (Pollonera, 1898)</td>
<td>AF367672</td>
<td>AF367640</td>
<td>Wilke et al. (2001)</td>
</tr>
<tr>
<td>Heloeilia dalmatica (Radoman, 1974)</td>
<td>AF367661</td>
<td>AF367631</td>
<td>Wilke et al. (2001)</td>
</tr>
<tr>
<td>Horatia klecakiana Bourguignat, 1887</td>
<td>KJ159127</td>
<td>KJ159128</td>
<td>SZAROWSKA & FALNIOWSKI (2014)</td>
</tr>
<tr>
<td>Hydrobia acuta (Draparnaud, 1805)</td>
<td>AF367680</td>
<td>AF278808</td>
<td>WILKE & DAVIS (2000)</td>
</tr>
<tr>
<td>Islamia piristoma Bodon et Cianfanelli, 2001</td>
<td>AF367671</td>
<td>AF367639</td>
<td>Wilke et al. (2001)</td>
</tr>
<tr>
<td>Lithophyllus naticoides (C. Pfeiffer, 1828)</td>
<td>AF367674</td>
<td>AF367642</td>
<td>Wilke et al. (2001)</td>
</tr>
<tr>
<td>Marstoniopsis insubrica (Küster, 1853)</td>
<td>AF367676</td>
<td>AF278813</td>
<td>FALNIOWSKI & WILKE (2001)</td>
</tr>
<tr>
<td>Montnegrespeum bogici (Pešić et Glöer, 2012)</td>
<td>KM875509</td>
<td>KM875510</td>
<td>present study</td>
</tr>
<tr>
<td>Pseudannicola lucens (Issel, 1866)</td>
<td>AF367687</td>
<td>AF367651</td>
<td>Wilke et al. (2001)</td>
</tr>
<tr>
<td>Pyrgula annulata (Linnaeus, 1767)</td>
<td>AY676124</td>
<td>AY341258</td>
<td>SZAROWSKA et al. (2005)</td>
</tr>
<tr>
<td>Radomaniola callosa (Paulucci, 1881)</td>
<td>AF367685</td>
<td>AF367649</td>
<td>Wilke et al. (2001)</td>
</tr>
<tr>
<td>Rissoa labiosa (Montagu, 1803)</td>
<td>AF367673</td>
<td>AF367641</td>
<td>Wilke et al. (2001)</td>
</tr>
<tr>
<td>Sadleriana flagellata (Küster, 1853)</td>
<td>AF367683</td>
<td>AF278813</td>
<td>WILKE & DAVIS (2000)</td>
</tr>
<tr>
<td>Ventrosia ventrosa (Montagu, 1803)</td>
<td>AF367681</td>
<td>AF118335</td>
<td>WILKE & DAVIS (2000)</td>
</tr>
<tr>
<td>Vinodolia fiumana Radoman, 1973</td>
<td>KF359899</td>
<td>KF359900</td>
<td>SZAROWSKA et al. (2013)</td>
</tr>
</tbody>
</table>
group, represented the main non-hydrobiid lineages within the Rissooidea (Wilke et al. 2001); the other six taxa represented the Hydrobiinae (including “Pyr gulinae”: Szarowska et al. 2005). The remaining taxa were chosen to represent all the main lineages within the European Sadlerianinae (Szarowska 2006).

The COI sequences were aligned by eye using BioEdit 5.0.0 (Hall 1999). For 18S, an initial alignment was performed using CLUSTALX 1.82 (Thompson et al. 1997) and edited with MACCLADE (Maddison & Maddison 2002). Mutational saturation for the COI dataset was examined by plotting the numbers of transitions and transversions for all the codon positions together, and for the 3rd position separately, against the percentage sequence divergence, using DAMBE 5.2.9 (Xia 2000). We also used DAMBE 5.2.9 to perform the saturation test (Xia et al. 2003). It revealed a significant degree of saturation in the third position of the sequences. In truncatelloids, COI approaches saturation with about 18.6% or 120 nucleotide differences (Davis et al. 1998), which seems to happen after approximately 10 million years. However, to avoid a substantial loss of information in the case of closely related species, this position was not excluded from the dataset and it was used for the analysis. In fact, the analysis carried out on the 2nd and 3rd position only resulted in similar deep phylogeny, but with several polytomies within more terminal nodes. It should be noted that the saturation test of Xia et al. (2003), for symmetrical tree, and the proportion of invariant sites I = 0.49, resulted in I = 0.4606, I = 0.7060, p = 0.000, thus showing little saturation.

Initially, we performed phylogeny reconstruction for 18S and COI data separately, using the maximum likelihood (ML) technique. Next, the partition homogeneity test (Farris et al. 1995) was performed (1,000 replicates) with PAUP*4.0b10 (Swofford 2002), to check whether the two genes could be analysed together. Since p > 0.792, the maximum likelihood heuristic search was then run for the combined molecular data. Following the recommendations of Posada & Buckley (2004) and Sober (2002), the best model for each dataset was chosen using the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC); both chose the same model: Tamura-Nei + I + G (Nei & Kumar 2000). We performed ML analyses in PAUP* and used a heuristic search strategy with stepwise addition of taxa, 10 random-sequence addition replicates, and tree-bisection-reconnection (TBR) branch swapping (Swofford et al. 1996), and with MEGA5.10 (Tamura et al. 2011). Nodal support was estimated using the bootstrap (BS) approach (Felsenstein 1985). Bootstrap values for ML trees were calculated using 10,000 bootstrap replicates, with MEGA5.10 and the same model parameters as for ML analysis.

RESULTS AND DISCUSSION

The female reproductive organs of the two studied specimens, with two seminal receptacles (rs1 and rs2: Radman 1973, 1983) were characteristic of numerous genera of the Sadlerianinae Radoman, 1973, certainly not of the Moitessieriidae Bourguignat, 1863 (Szarowska 2006). The penis with a lobe on the left side of its median part (Pešić & Glöer 2013) was also similar to the ones characteristic of several genera of the Sadlerianinae. In fact, its appearance is simple, not unique. A similar penis could be found in Dalmatinella fluviatilis Radoman, 1973 (Falniowski & Szarowska 2012).

Two sequences of COI were identical, the same concerns two sequences of 18S. The molecular tree based on the two loci (Fig. 1) confirmed general conclusions based on the morphology: Montenegrosporum does not belong to the family Moitessieriidae, thus being phylogenetically remote from Bythispeum, and belongs to the family Hydrobiidae Troschel, 1857 (bootstrap support 97%), and to the subfamily Sadlerianinae Radoman, 1973 (bootstrap support 73%). In the tree, Dalmatinella is the sister taxon of Montenegrosporum (bootstrap support 87%). Considering the genetic distance between the two taxa, within the range typical of inter-genus relationships within the Truncatelloidea, Montenegrosporum could be considered a distinct genus, as proposed by Pešić & Glöer (2013).

The results presented above may be a good illustration of the already well known fact that neither shell nor penis character states (especially if only the habitus of the latter is considered) could be used as the only basis of classification within the Truncatelloidea. Considering that most of the numerous nominal species of Bythispeum recorded from Europe are known as empty shells only – since the snails inhabit strictly subterranean, running or interstitial waters and only their shells could be found on the surface – one could expect that phylogenetic relationships within this group (including Paladilhiopsis Pavlovic, 1913 as well) may be complex, and the genus is polyphyletic.

ACKNOWLEDGEMENTS

The study was supported by a grant from the National Science Centre (2012/05/B/NZ8/00407) to Magdalena Szarowska.
Fig. 1. Maximum likelihood tree of the two concatenated sequences (18S and COI), bootstrap supports (10,000 replicates) given if >50%

REFERENCES

http://dx.doi.org/10.12657/folmal.021.001

Moquin-Tandon, 1856 (Gastropoda: Rissooidea: Bythinellidae) in Romania: species richness in a glacial
org/10.1080/00222930903359636

(Gastropoda: Rissooidea): intra- and intergeneric phy-
http://dx.doi.org/10.1093/mollus/67.4.483

Testing significance of incongruence. Cladistics 10:
tb00181.x

FELENSTEIN J. 1985. Confidence limits on phylogenies: an
http://dx.doi.org/10.2307/2408678

FOLMER O., BLACK M., HOEH W., LUTZ R. A., VRIJENHOEK
R. C. 1994. DNA primers for amplification of mito-
chondrial cytochrome c oxidase subunit I from diverse
294–299.

HALL T. A. 1999. BioEdit: a user-friendly biological se-
quence alignment editor and analysis program for
Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–
98.

HILLS D. M., MABLE B. K., LARSON A., DAVIS S. K., ZIMMER
HILLS D. M., MORITZ C., MABLE B. K., eds. Molecular
systematics. 2 edn. Sinauer Associates Inc., Sunderland,
Massachusetts, pp. 321–381.

MADDISON D. R., MADDISON W. P. 2002. MACCLADE.
Ver. 4.05. [Computer software and manual]. Sinauer

NEI M., KUMAR S. 2000. Molecular evolution and phylo-
genetics. Oxford University Press, Oxford, UK ~ New
York.

PEŠIĆ V., GLOËR P. 2012. A new species of Bythispereum
Bourguignat, 1882 (Hydrobiidae, Gastropoda) from

PEŠIĆ V., GLOËR P. 2013. Montenegrospeum, a new genus
of hydrobid snails (Gastropoda: Rissooidea) from

POZADA D., BUCKLEY T. R. 2004. Model selection and mod-
el averaging in phylogenetics: advantages of Akaike
Information Criterion and Bayesian approaches over
dx.doi.org/10.1080/10635150490522304

RADOMAN P. 1973. New classification of fresh and brackish
water Prosobranchia from the Balkans and Asia Minor.

RADOMAN P. 1983. Hydrobioida a superfamily of
Prosobranchia (Gastropoda). I Systematics. Serbian
Academy of Science and Arts, Monographs 547,
Department of Sciences 57: 1–256.

SOBER E. 2002. Instrumentalism, parsimony, and the
doi.org/10.1086/341839

SWOFFORD D. L. 2002. PAUP*—Phylogenetic analysis using
parsimony (* and other methods). Ver. 4. [Computer

SWOFFORD D. L., OLSEN G. J., WADDELL P. J., HILLIS D. M.
C., MABLE B. K. (eds), Molecular systematics. 2 ed.
Sinauer Associates Inc., Sunderland, Massachusetts,
pp. 407–514.

SZAROWSKA M. 2006. Molecular phylogeny, systematics
and morphological character evolution in the Balkan
Rissooidea (Caenogastropoda). Folia Malacol. 14:
99–168. http://dx.doi.org/10.12657/folmal.014.014

SZAROWSKA M., FALNIOWSKI A. 2011. An unusual, flagel-
llum-bearing hydrobiid snail (Gastropoda:Rissooidea:
Hydrobiidae) from Greece,with descriptions of a new
http://dx.doi.org/10.1080/00222933.2011.591067

SZAROWSKA M., FALNIOWSKI A. 2014. Horatio Bourguignat,
1887: is this genus really phylogenetically very close to
Radowaniala Szarowska, 2006 (Caenogastropoda:
doi.org/10.12657/folmal.022.003

Phylogenetic relationships of the subfamily Pyrgulininae
(Gastropoda: Caenogastropoda: Hydrobiidae) with
emphasis on the genus Dianella Gude, 1913. Zootaxa 891:
1–32.

SZAROWSKA M., GRZMIL P., FALNIOWSKI A., SIRBU I.
2007. Grossuana codreanui (Grossu, 1946) and the
phylogenetic relationships of the East Balkan gen-
us Grossuana (Radoman, 1973) (Gastropoda: Rissooidea).
org/10.1007/s10750-006-0530-4

SZAROWSKA M., HOFMAN S., FALNIOWSKI A. 2013. Vin-
odolida fiumanana Radoman, 1973 (Caenogastropoda:
Rissooidea): rediscovery and relationships of a species
dx.doi.org/10.12657/folmal.021.017

TAMURA K., PETERSON D., PETERSON N., STECHER G., NEI,
M., KUMAR S. 2011. MEGAS: Molecular evolutionary
 genetics analysis using maximum likelihood, evolution-
ary distance, and maximum parsimony method. Mol.
molbev/msr121

THOMPSON J. D., GIBSON T. J., PLEWNIAK F., JEANMOUGIN
F., HIGGINS D. G. 1997. The ClustalX windows inter-
face: flexible strategies for multiple sequence alignment
aided by quality analysis tools. Nucleic Acids Res. 24:

WILKE T., DAVIS G. M. 2000. Infraspecific mitochondrial
sequence diversity in Hydrobia ulvae and Hydrobia ventro-
sa (Hydrobiidae: Rissoacea: Gastropoda): Do their dif-
ferent life histories affect biogeographic patterns and
org/10.1111/j.1095-8312.2000.tb00202.x

WILKE T., DAVIS G. M., FALNIOWSKI A., GIUSTI F.,
BODON M., SZAROWSKA M. 2001. Molecular sys-
 tematics of Hydrobiidae (Gastropoda: Rissooidea):
testing monophyly and phylogenetic relationships.

Received: June 18th, 2014
Revised: July 24th, 2014
Accepted: July 25th, 2014
Published on-line: October 29th, 2014