A NEW ISLAMIA SPECIES (GASTROPODA: HYDROBIIDAE) FROM CYPRUS

CANELLA RADEA1*, ARISTEIDIS PARMAKELIS1, SIMON DEMETROPoulos2, KATERINA VARDINOYANNIS3

1Faculty of Biology, Department of Ecology and Systematics, Panepistimioupolis Ilissia, 15784 Athens, Greece (e-mail: kradea@biol.uoa.gr; aparmakelis@biol.uoa.gr)
2Cyprus Wildlife Society, P.O. Box 24281, 1703 Lefkosia, Cyprus (e-mail: chelonia@logos.cy.net)
3Natural History Museum of Crete, University of Crete, P.O. Box 2208, 71409 Herakleio, Greece (e-mail: mollusca@nhmc.uoc.gr)
*corresponding author

ABSTRACT: A new valvatiform hydrobiid, Islamia mylonas, from the Troodos Mts, Cyprus, is described. The shell characters, radula and soft parts anatomy are studied in detail and illustrated. The differences between the new species and its congeners from the Balkan Peninsula and the Mediterranean Basin are extensively discussed.

KEY WORDS: Mollusca, Truncatelloidea, freshwater, spring, Troodos Mts

INTRODUCTION

Islamia Radoman, 1973 is a genus of minute hydriid gastropods inhabiting springs, rivers, lakes and subterranean waters (Radoman 1983, BiChain & Prié 2005). It includes 42 recognised extant taxa (MolluscAbase 2017) distributed in the Mediterranean Basin and the Balkan Peninsula; most of them are endemic to single springs or other local aquatic systems (e.g. Radoman 1983, Reischütz 1988, Bodon et al. 2001, Arconada & Ramos 2006, Bodon & Cianfanelli 2012, Glöer & Grego 2015, Yildirim et al. 2017). The characters of the reproductive organs are diagnostic for the genus: females with two seminal receptacles either close together or away from each other; distal seminal receptacle (RS1) without evident duct, proximal seminal receptacle (RS2) larger and with evident duct; no bursa copulatrix; males with large penis apically bifid due to the well-developed non-glandular penial lobe (Radoman 1983, Bodon et al. 2001, Arconada & Ramos 2006). Herein we describe a new species of Islamia from the Troodos Mts, Cyprus, Eastern Mediterranean Basin.

MATERIAL AND METHODS

Few specimens and empty shells of the hydrobiid in question were found during sorting of lot FC 13145 collected from a spring in the Troodos Mts in 2010. Shell characters were studied and four shell measurements (shell height and width, aperture height and width) were taken from 13 specimens using the micrometer of a Stemi 2000-C stereomicroscope. Additionally, four ratios were calculated: shell height : shell width, aperture height : aperture width, shell height : aperture height and shell width : aperture width. Three males and three females were anatomically examined after dissecting under a stereomicroscope Stemi 2000-C, Zeiss, Germany using very fine needles and pointed watchmaker’s forceps. Prior to dissection, the shells were removed by soaking in Pereny solution. The soft parts characters were documented using a camera (Canon EOS 1000D) coupled with the stereomicroscope.
The radulae and the opercula were cleaned with KOH solution (5 g/l) at room temperature, rinsed in distilled water and air-dried before being mounted on stubs and spray-coated with gold–palladium. They were photographed in a scanning electron microscope Jeol JSM–35 operating at 25 kV. The morphological terminology follows that of Hershler & Ponder (1998).

SYSTEMATIC PART

Family: Hydrobiidae Stimpson, 1865

Genus: Islamia Radman, 1973

Type species: Islamia valvataeformis (Möllendorf, 1873)

Islamia mylonas n. sp.

Material examined: FC 13145, Kakarmata Spring, Cyprus, 07/12/2010, leg. S. Demetropoulos

Holotype: NHMC 38828

Paratypes: Two paratypes, NHMC 44572

Type locality: Kakarmata Spring, Cyprus, 34°55′10.1″N, 33°14′18.6″E, 622 m a.s.l.

Etymology: The specific name derives from the last name of Prof. Moissis Mylonas, who has given a strong impetus to the study of Greek and Cypriot malacofauna and inspired many Greek students, including ourselves.

Diagnosis: Shell minute, valvatiform, operculum circular paucispiral without peg; single pair of basal cusps on central radular tooth; penis with muscular pleat protruding on the left side and large trapezoidal penial lobe overgrowing the apex of penis proper; penial lobe with more or less prominent secondary lobe on its right apical edge; bursa copulatrix absent, two seminal receptacles arising at a distance from each other, renal oviduct with a secondary lateral loop.

Description: Shell (Figs 1–11, Table 1). Valvatiform, minute (maximum height 0.76 mm, maximum width 1.15 mm) with up to 3.5 whorls, thin, colourless, transparent; spire more or less depressed; whorls rounded, regularly growing with shallow sutures. Periostracum cream-coloured; aperture roundish, prosocline adhering to the body whorl; peristome continuous, thickened and reflected at columellar margin, outer margin simple; umbilicus open, deep and wide. Operculum (Figs 12–13). Circular, paucispiral, thin, corneous, light yellowish (in preserved specimens); inner surface weakly convex without any peg; nucleus central.

Soft body pigmentation. Preserved specimens unpigmented; large eye spots present.

Ctenidium-osphradium (Fig. 14). Ctenidium with ca. 7 filaments; filaments broader than high; osphradium of medium width, less than twice longer than broad, opposite posterior part of ctenidium.

Digestive system apart from radula (Fig 15). Style sac smaller than stomach, not protruding to intestinal loop, intestine Z-shaped.

Radula (Figs 16–17). Central tooth trapezoidal, its dorsal edge strongly concave; basal tongue broadly V-shaped and roughly equal to elongated lateral margin; one pair of medium-sized basal cusps (bc2); median cusp long, narrow, rounded, protruding, followed by 5 narrow cusps of decreasing size on each side, the fifth cusp being much reduced in size; lateral tooth face taller than wide; central cusp longer than lateral cusps, 4 lateral cusps on outer side, 3 smaller lateral cusps on inner side; inner marginal tooth with ca. 25–30 long, narrow cusps; cusps almost equal in size, the first 2–3 outer ones being very small; outer marginal tooth with ca. 14–18 cusps.

Table 1. Shell morphometry of Islamia mylonas sp. n. Measurements are in mm. For abbreviations see Material and Methods

<table>
<thead>
<tr>
<th>Type locality</th>
<th>Min</th>
<th>Sw</th>
<th>Ah</th>
<th>Aw</th>
<th>Sh/Sw</th>
<th>Sh/Ah</th>
<th>Sw/Aw</th>
<th>Ah/Aw</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>0.76</td>
<td>1.15</td>
<td>0.55</td>
<td>0.52</td>
<td>0.71</td>
<td>1.63</td>
<td>2.42</td>
<td>1.11</td>
</tr>
<tr>
<td>SD</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.03</td>
<td>0.06</td>
<td>0.17</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>CV*</td>
<td>0.10</td>
<td>0.06</td>
<td>0.10</td>
<td>0.07</td>
<td>0.10</td>
<td>0.12</td>
<td>0.04</td>
<td>0.07</td>
</tr>
</tbody>
</table>
A new valvatiform hydrobiid species

Penis (Figs 18–19). Large relative to head, long, wide, dorso-ventrally flattened, folded, apically bifid due to the penial lobe on its left side and penis proper on the right side; penial lobe large, exceeding the tapered distal end of penis proper, trapezoidal with a more or less distinct secondary lobe on its right apical edge and an ovate refringent area on the left; base of penis expanded; large muscular pleat in the middle of penial lobe on ventral side of penis protruding at the left side of penis; penial duct undulat-

Figs 1–11. Shells of *Islamia mylonas* n. sp.: 1, 5 – apical view; 2, 6 – umbilical view; 3, 7 – lateral view, 4, 8–11 – apertural view. Scale bar 1 mm

Figs 12–13. Operculum of *Islamia mylonas* n. sp.: 12 – outer view; 13 – inner view. Scale bar 200 μm

Figs 14–15. Osphradium, ctenidium and part of digestive system of *Islamia mylonas* n. sp.; 14 – osphradium and ctenidium; 15 – part of digestive system. Scale bars 0.25 mm. For abbreviations see Material and Methods
ing, nearly centrally positioned on the penis proper and opening at its apex.

Anterior female reproductive system (Figs 20–21). Albumen gland of irregular shape; bursa copulatrix absent; renal oviduct unpigmented and well-developed with a narrow vertical primary loop and a secondary lateral loop; two elongate seminal receptacles located at a distance in opposite positions of renal oviduct; proximal seminal receptacle (RS2) with an orange-pink pearl shine emerging from the top of renal oviduct primary loop; distal seminal receptacle (RS1) smaller than proximal one, without distinct duct; one female with pseudopenis on the head.

DISCUSSION

The freshwater hydrobiid fauna of Cyprus has not been extensively studied so far. Only two hydrobiid species, *Pseudamnicola malickyi* Schütt, 1980 and *Islamia* sp., have been recorded in this country (Schütt 1980, Fischer 1994, Mienis et al. 2012). Several species of *Islamia* have been found and described in adjacent countries such as Greece, Israel, Lebanon and Turkey (Radoman 1983, Schütt 1991, Bodon et al. 2001).

The new species, having a well-developed penial lobe and a muscular pleat on the ventral side of penis, belongs to the “oriental” group of *Islamia* species which inhabits France, part of Italy, Croatia, Bosnia and Herzegovina, Greece, Turkey, Israel and Lebanon (Bodon et al. 1995, Bodon & Cianfanni 2002, 2012). In Spain and part of Italy, *Islamia* species are characterised by the absence of the muscular pleat.
and in some cases the penial lobe is very small (Bodon et al. 1995, Bodon & Cianfanneli 2002, Arconada & Ramos 2006). As can be deduced from Radoman (1983), the species of the “oriental” group, at least those from Bosnia and Herzegovina, Greece and Turkey, have seminal receptacles arising from the same point of the renal oviduct. The seminal receptacles of I. mylonas arise at a distance from each other as is the case of several Islamia taxa from Italy and Spain (Arconada & Ramos 2006, Bodon & Cianfanneli 2012). The presence of pseudopenis on the head of one female specimen is an interesting characteristic of the new species since only two other known Islamia taxa have this character: Islamia h. hensricti Arconada et Ramos, 2006 and I. pallida Arconada et Ramos, 2006 from Spain (Arconada & Ramos 2006).

A unique character of I. mylonas, which has not been described in any other known Islamia species, is the secondary lateral loop of the renal oviduct. A similar lateral loop is found in Pseudinnicola Paulucci, 1878 (see e.g. Radoman 1983: 27, fig. 10).

The new species differs from the other members of the “oriental” group in several characters of shell and soft parts, and displays some similarities to them. It differs from the type species of the genus Islamia described from Bosnia and Herzegovina, namely I. valvataeformis (Möllendorf, 1873), in the position of the seminal receptacles which arise very close to one another in the latter species (Radoman 1983: 124–125, fig. 69A, B). However the two species share the same character state in their radulae since I. valvataeformis has only one pair of basal cusps on the central radular tooth (Giusti et al. 1981: 26, fig. 1.1–3).

The Greek species I. trichoniana Radoman, 1978 and I. graeca Radoman, 1973 have shells larger than those of I. mylonas and their seminal receptacles arise very close to one another as it can be deduced from Radoman (1983: 124). Additionally, the penis of I. graeca seems to have a very small penial lobe (Radoman 1983: 125, fig. 70C) while the muscular pleat in the penis of I. trichoniana does not protrude to the left (Radea et al. 2017: 6, figs 10–12). Both I. mylonas and I. trichoniana have one pair of basal cusps on the central radular tooth (Radea et al. 2017: 6, fig. 14). The assignment to Islamia of two other Greek hydrobids, I. epiroa (Schütt, 1962) and I. bendidis P L. Reischütz, 1988, was mainly based on shell characters and the allocation of these taxa remains very uncertain (Bodon et al. 2001). Besides, I. hadei (E. Gittenberger, 1982) was transferred to the genus Daphniola by Falniowski & Szarowska (2011).

The new species differs in its shell morphology and male genitalia from I. mienisi (Schütt, 1991) from Israel and from I. gaillardoti (Schütt, 1991) from Israel and Lebanon. The shell of I. mienisi is ovate-conical and its penis has a pointed lobe and pointed apex (Schütt 1991: 134, fig. 5a–c; 135); I. gaillardoti has a larger shell than that of I. mylonas and a different general penis shape (Schütt 1991: 135–136, fig. 6b, Bodon & Cianfanneli 2002: 28).

The main features discriminating between I. mylonas and the known Turkish Islamia species, namely I. bunarbas (Schütt, 1964), I. pseudorientalica Radoman, 1973, I. anatolica Radoman, 1973, and I. burduricus Yıldırım, Kaya, Gürlek et Koca, 2017, are the characters of shell and genitalia. All the Turkish species are larger compared to I. mylonas; the shell of I. bunarbas is ovate-conical and those of I. pseudorientalica, I. anatolica and I. burduricus are trochiform (Radoman 1983: 206, Table 7, 228, figs 154–156, Yıldırım et al. 2017: 11–12, fig. 3A). All four species are characterised by a relatively narrow penis with a long slit between the penis proper and the penial lobe of the latter reaching or slightly exceeding the penis tip (Radoman 1983: 125, D–F, Yıldırım et al. 2017: 11–12, fig. 3B, C, respectively). An additional character discriminating between I. mylonas and the Turkish Islamia is that the seminal receptacles, at least in the first three species, are located very close to one another as it can be inferred from Radoman (1983: 124).

I. mylonas exhibits interesting similarities with the cavernicolous I. emanueli Girardi, 2009 from France: the latter species also has a secondary lobe at the right edge of the primary penial lobe (Girardi 2009: 34–35, fig. 1A) and the seminal receptacles arise at a distance from each other (Girardi 2009: 35, fig. 1D). However, the shell of I. emanueli is much larger than that of the new species.

The new species shares several anatomical characters with Islamia taxa belonging either to the oriental or to the occidental group. Regrettably, the extremely small number of specimens found did not allow molecular studies of phylogenetic relationship of I. mylonas with its congeners.

ACKNOWLEDGMENTS

We are grateful to J. Heller and H. Mienis for providing shells of I. gaillardoti and to A. D. Velementzas for the SEM photographs.
REFERENCES

RADOMAN P. 1983. Hydrobioidea a superfamily of Prosobranchia (Gastropoda) I. Sistematics [sic]. Serbian Academy of Sciences and Arts, Monographs 547, Department of Sciences 57: 1–256.

Received: October 24th, 2017
Revised: October 29th, 2017
Accepted: November 2nd, 2017
Published on-line: November 20th, 2017