A NEW MONTENEGROSPEUM SPECIES FROM SOUTH CROATIA (MOLLUSCA: GASTROPODA: HYDROBIIDAE)

JOZEF GREGO¹, PETER GŁOER², ALEKSANDRA RYSIEWSKA³, SEBASTIAN HOFMAN⁴, ANDRZEJ FALNIOWSKI⁵*

¹Horná Mičiná, SK-97401 Banská Bystrica, Slovakia (e-mail: jozef.grego@gmail.com)
²Biodiversity Research Laboratory, Schulstrasse 3, D-25491 Hetlingen, Germany (e-mail: gloeer@malaco.de)
³Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland (e-mail: andrzej.falniowski@uj.edu.pl)
⁴Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
⁵*corresponding author

ABSTRACT: The extremely rich stygobiont malacofauna of the Balkans is still poorly studied, and the systematics is based mostly on shells whose characters are often misleading. An interesting stygobiont gastropod species was found in several springs feeding the Cetina River in the SW. part of Sinj Basin in Croatia. Its shell resembled the ones of moitessieriid genera Paladilhiopsis, Bythiospeum, or Iglica. Analyses of COI and H3 markers placed it close to the hydrobiid Montenegrospeum bogici Pešić et Glöer, 2012 from central Montenegro. It is congeneric but molecularly and morphologically distinct. The new species is described herein as Montenegrospeum sketi n. sp.

KEY WORDS: cytochrome oxidase COI, histone H3, molecular phylogeny and species distinctness, shell, stygobiont, gastropod, Balkans

INTRODUCTION

The extremely rich stygobiont malacofauna of the Balkans is still poorly known, and the systematics is based mostly on shells whose characters are often misleading. Bythiospeum bogici was described by PEŠIĆ & GŁOER (2012) in the genus Bythiospeum Bourguignat, 1882 from subterranean waters of the spring Taban, in the central part of Montenegro near Podgorica. The description was based on empty shells only. Later PEŠIĆ & GŁOER (2013) obtained live specimens and described their soft parts: lack of eyes and pigment, and penis with a lobe at its medial part. They placed B. bogici in a new monotypic genus: Montenegrospeum Pešić et Glöer, 2013. The species is known from its type locality only (PEŠIĆ & GŁOER 2013). Later, applying molecular markers (mitochondrial cytochrome oxidase subunit I, COI and nuclear 18SrDNA), it was shown that Montenegrospeum did not belong to the Moitessieriiidae, but to the Hydrobiidae Troschel, 1857, subfamily Sadlerianinae Radoman, 1973, with Dalmatinella Radoman, 1973 as the sister taxon (FALNIOWSKI et al. 2014). This was also confirmed by morphological data (FALNIOWSKI et al. 2014): female reproductive organs with two seminal receptacles (rs, and rs₂; RADOMAN 1973, 1983), and penis with a lobe on the left side of its median part (PEŠIĆ & GŁOER 2013), also similar to the ones characteristic of several genera of the Sadlerianinae (SZAROWSKA 2006). Recently a few localities were found in Croatia with Montenegrospeum-like empty shells and a few live specimens became available for molecular studies. All those localities represented karst habitats. The aim of this paper is to establish the systematic position of the new species, and to describe it as Montenegrospeum sketi n. sp., applying shell morphology and molecular markers.
MATERIAL AND METHODS

The studied material was obtained by sieving sandy sediments of karstic springs using microhabitat preferences and sampling method according to Grego et al. 2017a (Fig. 1).

Three live specimens were collected at two localities (Fig. 1):

1. (1G6) – Izvor Ruda-Beguša, Ruda, sand at the stream bottom below the spring lake, 13 km ESE of Sinj, Split district, Croatia, 43°40’06.6”N, 16°47’45.6”E, leg. JOZEF GREGO, 17.03.2017 (Figs 2, 3).

2. (1G7) – Izvor Grab, Grabska Mlinica, 12 km SE of Sinj, Split district, Croatia, 43°38’27.4”N, 16°46’13”E, leg. JOZEF GREGO, 16.03.2017 (Fig. 4).

Empty shells were found at another three localities (Fig. 1):

1a. Izvor Ruda-Beguša, cave just above the spring zone, sieved from muddy sediment at the cave bottom, 13 km ESE of Sinj, Split district, Croatia, 43°40’06.6”N, 16°47’45.6”E, leg. JOZEF GREGO, 17.03.2017 (the locality is very close to the spring zone of the type locality). Many aperture fragments and one empty intact shell were collected (Fig. 5).

3. Vrelo Kosinac on the left side of the road to Gala, sandy sediment at the spring zone. Sinjski Obrovac, Split district, Croatia, 43°43’48.4”N, 16°42’03.9”E, leg. JOZEF GREGO, 17.03.2017 (only one empty adult shell).

4. Spring Mali Rumin 100 m above the old watermill, sandy sediment at the millstream, Rumin 6 km NW of Sinjski Obrovac, Split district, Croatia, 43°46’49.8”N, 16°38’55.5”E, leg. JOZEF GREGO, 17.03.2017 (only one empty juvenile shell probably representing the species).

5. Type locality of Montenegrospeum bogici, after PEŠIĆ & GLOER (2012).

The gastropods were sieved and extracted from sandy sediments, and fixed in 70–80% ethanol. The live specimens were transferred to 80% analytical ethanol. The shells were photographed with a CANON EOS 50D digital camera, under a NIKON SMZ18 microscope with dark field and with a digital camera system Leica R8 (Leitz Photar 21 mm objective with Novoflex bellows), ImageJ scientific image analysing software (SCHNEIDER et al. 2012) was used for taking measurements together with direct measurement with eye-piece micrometer.

DNA was extracted from foot tissue using a Sherlock extraction kit (A&A Biotechnology) and dissolved in 20 ml of tris-EDTA buffer. For details of PCR conditions, primers used and sequencing see SZAROWSKA et al. (2016). The sequences were initially aligned in the MUSCLE (EDGAR 2004) programme in MEGA 6 (TAMURA et al. 2013) and then checked in Bioedit 7.1.3.0 (HALL 1999). The saturation test (XIA 2000, XIA et al. 2003) was performed using DAMBE (XIA 2013). In the phylogenetic analysis additional sequences from GenBank were used.

Fig. 1. Localities of the studied Montenegrospeum in Croatia (1-4) and Monenegro (5): 1 – Izvor Ruda-Beguša, Ruda, Split district, locus typicus of M. sketi n. sp.; 1A – cave near Izvor Beguša, Ruda, Split district; 2 – Izvor Grab, Grabska Mlinica, Split district; 3 – Izvor Kosinac, Sinjski Bobrova Split district; 4 – Izvor Mali Rumin, Rumin, Split district; 5 – Izvor Taban, Podgorica, locus typicus of M. bogici (Pešić et Glöer, 2012)
A new Montenegrospeum species from South Croatia

The data were analysed using approaches based on the Bayesian inference and maximum likelihood (ML). We applied the GTR model, whose parameters were estimated by RaxML (Stamatakis 2014).

The Bayesian analyses were run using MrBayes v. 3.2.3 (Ronquist et al. 2012) with the default priors. The GTR model was best fitted to our data. Two simultaneous analyses were performed, each of which lasted 10,000,000 generations, with one cold chain and three heated chains, starting from random trees and sampling the trees every 1,000 generations. The first 25% of the trees were discarded as burn-in. The analyses were summarised as a 50% majority-rule tree. The ML approach was applied with RAxML v. 8.0.24 (Stamatakis 2014). One thousand searches were initiated with starting trees obtained using the randomized stepwise addition maximum parsimony method. The tree with the highest likelihood score was regarded as the best representation.

Figs 2–5. Studied localities: 2 – Izvor Ruda-Beguša, Ruda, Split district, locus typicus of M. sketi n. sp.; 3 – Izvor Ruda-Beguša, Ruda, old watermill bellow spring zone; 4 – Izvor Grab, Grabska Mlinica, one of the spring outlets where the specimens of M. sketi n. sp. were found; 5 – Izvor Ruda-Beguša Ruda, cave above the main spring (Photo: G. Jakab and B. Šmída)
Bootstrap support was calculated with 1,000 replicates and summarised in the best ML tree. RAxML analyses were performed using the free computational resource CIPRES Science Gateway (MILLER et al. 2010).

Abbreviations: CNHM – Croatian Natural History Museum, Zagreb; HNHM – Hungarian Natural History Museum, Budapest; H – shell height; W – shell width; BH – height of body whorl; BW – width of body whorl; AH – aperture height; AW – aperture width; LT – locus typicus.

<table>
<thead>
<tr>
<th>Species</th>
<th>COI</th>
<th>H3</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzoniella finalina Giusti et Bodon, 1984</td>
<td>AF367650</td>
<td>-</td>
<td>WILKE et al. (2001)</td>
</tr>
<tr>
<td>Avenonia brevis berenguieri (Draparnaud, 1805)</td>
<td>AF367638</td>
<td>-</td>
<td>WILKE et al. (2001)</td>
</tr>
<tr>
<td>Bithynia tentaculata (Linnaeus, 1758)</td>
<td>AF367643</td>
<td>-</td>
<td>WILKE et al. (2001)</td>
</tr>
<tr>
<td>Bythinella austriaca (von Frauenfeld, 1857)</td>
<td>MQ398584</td>
<td>-</td>
<td>FALNIOWSKI et al. (2012b)</td>
</tr>
<tr>
<td>Bythinella micherdzinskii Falniowski, 1980</td>
<td>AF367638</td>
<td>-</td>
<td>WILKE et al. (2001)</td>
</tr>
<tr>
<td>Daphniola louisi Falniowski et Szarowska, 2000</td>
<td>KC810060</td>
<td>-</td>
<td>SZAROWSKA & FALNIOWSKI (2013a)</td>
</tr>
<tr>
<td>Emmericia expansilabris Bourguignat, 1880</td>
<td>JX073651</td>
<td>-</td>
<td>FALNIOWSKI & SZAROWSKA (2012)</td>
</tr>
<tr>
<td>Fissuria boui Boeters, 1981</td>
<td>AF367654</td>
<td>-</td>
<td>WILKE et al. (2001)</td>
</tr>
<tr>
<td>Graziana alpestris (Frenenfeld, 1863)</td>
<td>AF367641</td>
<td>-</td>
<td>FALNIOWSKI et al. (2007)</td>
</tr>
<tr>
<td>Grossuana codreanui (Grossu, 1946)</td>
<td>KM887915</td>
<td>-</td>
<td>WILKE et al. (2001)</td>
</tr>
<tr>
<td>Hauffenia michleri Küster, 1932</td>
<td>NY384131</td>
<td>-</td>
<td>FALNIOWSKI et al. (2008)</td>
</tr>
<tr>
<td>Heleobia dobrogica (Grossu et Negrea, 1989)</td>
<td>EU938131</td>
<td>-</td>
<td>FALNIOWSKI et al. (2014b)</td>
</tr>
<tr>
<td>Horatia klecakiana Bourguignat 1887</td>
<td>KJ159128</td>
<td>-</td>
<td>FALNIOWSKI & SZAROWSKA (2014b)</td>
</tr>
<tr>
<td>Hydropia acuta (Draparnaud, 1805)</td>
<td>AF278808</td>
<td>-</td>
<td>WILKE et al. (2000)</td>
</tr>
<tr>
<td>Islamia zermanica Radoman, 1973</td>
<td>KU662362</td>
<td>-</td>
<td>BERAN et al. (2016)</td>
</tr>
<tr>
<td>Lithoglyphus prasinus (Küster, 1852)</td>
<td>JX073651</td>
<td>-</td>
<td>FALNIOWSKI & SZAROWSKA (2012)</td>
</tr>
<tr>
<td>Littorina littorea (Linnaeus, 1758)</td>
<td>KF644330</td>
<td>-</td>
<td>LAYTON et al. (2014)</td>
</tr>
<tr>
<td>Kerzia kuscheri (Bole, 1961)</td>
<td>KY087884</td>
<td>-</td>
<td>RYSIEWSKA et al. (2017)</td>
</tr>
<tr>
<td>Marstoniopsis insubrica (Küster, 1853)</td>
<td>AF322408</td>
<td>-</td>
<td>FALNIOWSKI & WILKE (2001)</td>
</tr>
<tr>
<td>Moitessieria cf. puteana</td>
<td>AF367635</td>
<td>-</td>
<td>WILKE et al. (2001)</td>
</tr>
<tr>
<td>Montenegrospeum bogici (Pešić et Glöer, 2012)</td>
<td>KM875510</td>
<td>-</td>
<td>FALNIOWSKI et al. (2014)</td>
</tr>
<tr>
<td>Montenegrospeum sketi Grego et Glöer, 2018</td>
<td>MG880216</td>
<td>MG880219</td>
<td>MG880220</td>
</tr>
<tr>
<td>Onobops jacksoni (Bartsch, 1953)</td>
<td>AF367645</td>
<td>-</td>
<td>WILKE et al. (2001)</td>
</tr>
<tr>
<td>Peningia ulvae (Pennant, 1777)</td>
<td>AF118302</td>
<td>-</td>
<td>WILKE & DAVIS (2000)</td>
</tr>
<tr>
<td>Pontobelgrandiella sp.</td>
<td>MG880216</td>
<td>MG880219</td>
<td>MG880220</td>
</tr>
<tr>
<td>Pseudanicia sp.</td>
<td>KT10736</td>
<td>-</td>
<td>SZAROWSKA et al. (2016)</td>
</tr>
<tr>
<td>Radomaniola curta (Küster, 1853)</td>
<td>KC011814</td>
<td>-</td>
<td>FALNIOWSKI et al. (2012a)</td>
</tr>
<tr>
<td>Sadleriana fluminensis (Küster, 1853)</td>
<td>KF193067</td>
<td>-</td>
<td>SZAROWSKA & FALNIOWSKI (2013b)</td>
</tr>
<tr>
<td>Semisalsal dalmatica Radoman, 1974</td>
<td>AF367631</td>
<td>-</td>
<td>WILKE et al. (2001)</td>
</tr>
<tr>
<td>Tanousia zrmanjae (Brusina, 1866)</td>
<td>KU041812</td>
<td>-</td>
<td>BERAN et al. (2015)</td>
</tr>
<tr>
<td>Truncatella pulchella Pfeiffer, 1839</td>
<td>AF253085</td>
<td>-</td>
<td>WILKE et al. (2013)</td>
</tr>
<tr>
<td>Truncatella scalaris (Michaud, 1830)</td>
<td>JX970621</td>
<td>-</td>
<td>WILKE et al. (2013)</td>
</tr>
<tr>
<td>-</td>
<td>MG51322</td>
<td>-</td>
<td>GREGO et al. (2017b)</td>
</tr>
</tbody>
</table>
MOLECULAR PART – RESULTS AND DISCUSSION

The sequences were obtained from two specimens (Figs 6, 7). The saturation tests revealed no saturation. The ML tree (Fig. 8) computed for the COI (442 bp, GenBank Accession numbers MG880216-MG880217) clearly showed close relationships of both specimens with M. bogici (bootstrap support 100%), and the position of the genus within the Hydrobiidae Troschel, 1857, subfamily Sadlerianinae. However, the bootstrap supports of deeper nodes were small which is typical of COI (e.g. SZAROWSKA 2006). In the tree computed for COI but including only the genera of the Sadlerianinae (Fig. 9) bootstrap 68% (very close to 70% usually accepted as significant enough, although there are no strict rules) supported Tanousia Bourguignat in Servain, 1881, as potential sister clade of Montenegrospum, and 90% bootstrap supported (Bayesian probability 0.98) the Montenegrospum/Tanousia and Dalmatinella clade.

The p-distance between M. sketi and M. bogici calculated for COI was 0.011. The relative range of genotypic differentiation, measured as simple p-distance (or, often, K2P distance which is not justified, but the values are only somewhat higher than the ones of p-distance), most often calculated for mitochondrial COI (commonly used in phylogenetic studies: DAVIS et al. 1998), was used (e.g. BICHAIN et al. 2007). It must be stressed, however, that the given values of the distances between closely related but still distinct species may characterise a group of rather closely related species, but may be too low in another group, since there is no general rule defining the threshold value: in some genera the interspecies distances are higher, in some other they are smaller (e.g. WILKE & DAVIS 2000, WILKE 2003, FALNIOWSKI et al. 2007, 2009, SZAROWSKA et al. 2007, FALNIOWSKI & SZAROWSKA 2012, 2013, 2015, SZAROWSKA & FALNIOWSKI 2013a, b, 2014a, b, SZAROWSKA et al. 2014b). The p-distance between M. bogici and M. sketi was close to the threshold value between the intra- and interspecies distances in most of the Truncatelloidea.

In the ML tree computed for histone H3 (308 bp, GenBank Accession numbers MG880218-MG880220) (Fig. 10) Belgrandiella Wagner, 1927 was the sister clade of Montenegrospum, bootstrap-support 78%, clearly within the Sadlerianinae. The sister-clade relationship between M. bogici and M. sketi was 100% supported. The p-distance was 0.010, which is relatively high for this locus (e.g. SZAROWSKA et al. 2016). For each of the presented sets of taxa the Bayesian trees presented identical topologies as in the ML trees, only the Bayesian probabilities, shown in the trees, were not always correlated with the bootstrap supports.

SYSTEMATIC PART (BY J. GREGO & P. GLÖER)

Family: Hydrobiidae Stimpson, 1865
Genus: Montenegrospum Pešić et Glöer, 2013
Type species: Montenegrospum bogici (Pešić et Glöer, 2012)

Montenegrospum sketi n. sp. (Figs 11, 12)

Diagnosis: The new species differs from the only other known representative of the genus, Montenegrospum bogici Pešić et Glöer, 2012 (Figs 13, 14), in its more elongated conical shell shape, slightly more inflated whorls, more prominent umbilicus as well as in the different aperture situated more to the right from the columellar axis. The lateral profile of the lip is more forward protruding at its lower end and more sinuated in M. bogici. The proportionally smaller aperture of the new species is less produced at the lower part of the shell outline and its margin is less reflected.

Type locality: Croatia, Split district, Ruda, Izvor Ruda-Beguša 13 km ESE of Sinj, sand at the stream bottom below the spring lake, 43°40'06.6"N, 16°47'45.6"E.

Type material: Holotype: CNHM11394 from type locality, leg. JOZEF GREGO, 17.03.2017, Paratypes:
same data (HNHM102778/1; coll. GREGO/10; coll. GLÖER/1); Croatia, Split district, Grabska Mlinica, Izvor Grab, 12 km SE of Sinj, 43°38'27.4''N, 16°46'13''E, leg. JOZEF GREGO, 16.03.2017 (CNHM11395/1, coll. GREGO/7); Croatia, Split district, Sinjski Obrovac, Vrelo Kosinac, on the left side of road to Gala, sandy sediment at the spring zone, 43°43'48.4''N, 16°42'03.9''E, leg. JOZEF GREGO, 17.03.2017 (1 whole specimen, and several aperture fragments in coll. GREGO); Sinjski Obrovac, spring Mali Rumin 100 m above the old watermill, sandy sediment at the millstream, Rumin 6 km NW of Sinjski Obrovac, Split district, Croatia, 43°46'49.8''N, 16°38'55.5''E, leg. JOZEF GREGO, 17.03.2017 (1 juvenile shell in coll. GREGO).

Etymology: Named in honour of prof. Boris Sket, University of Ljubljana, Slovenia, a well-known expert in biospeleology who contributed much to the knowledge of subterranean invertebrates of the Alps and Dinarides.

Other material: Ruda, Izvor Ruda-Beguša, 13 km ESE of Sinj, Split district, Croatia, Cave right above the spring zone, sieved from muddy sediment at the cave bottom, 43°40'06.6''N, 16°47'45.6''E, leg. JOZEF GREGO, 16.03.2017 (1 whole specimen, and several aperture fragments in coll. GREGO); Sinjski Obrovac, spring Mali Rumin 100 m above the old watermill, sandy sediment at the millstream, Rumin 6 km NW of Sinjski Obrovac, Split district, Croatia, 43°46'49.8''N, 16°38'55.5''E, leg. JOZEF GREGO, 17.03.2017 (1 juvenile shell in coll. GREGO).

Fig. 8. Maximum likelihood tree of selected Truncatelloidea, computed for COI; bootstrap supports given if >50%, and Bayesian probabilities if >0.80
Description: The milky white semi-translucent shell has five convex inflated whorls separated by a deep suture. It is elongated-conical with smooth surface and aperture slightly protruding against the body whorl and its left margin not protruding beyond the columellar axis. The aperture is oval, vertically elongated and attached to the body whorl by a tiny furrow; the peristome slightly outward expanded in some specimens. The umbilicus is tiny and opened. The lateral profile of the lip margin very slightly sinuated and almost parallel with the columellar axis.

Measurements:
Holotype of *M. sketi* sp. n.: H 2.53 mm; W 1.12 mm; BH 1.38 mm; BW 0.95 mm; AH 0.78 mm; AW 0.67 mm; H/W 2.26; AH/AW 1.16; W/BW 1.18; H/BH 1.83; H/AH 3.24; W/AW 1.67. Holotype of *M. bogici*: H 2.33 mm; W 1.10 mm; BH 1.26 mm; BW 0.88 mm; AH 0.82 mm; AW 0.75 mm; H/W 2.12; AH/AW 1.09; W/BW 1.25; H/BH 1.85; H/AH 2.84; W/AW 1.47.

Habitat: The species is a true subterranean freshwater gastropod inhabiting the cave systems unstudied.
so far, and adjacent submerged spring debris in the
NE part of the Sinj Basin. Empty shells and a few
live specimens were found washed out in the sand of
the spring zone close to the spring outlets. An empty
shell and many fragments were found in the mud-
dy sediment inside the spring in the cave above the
Ruda-Beguša spring zone, which indicates its troglo-
biont origin. All the known localities are remarka-
ble and large karstic springs at the left tributary of
the Cetina River draining SW edge of Livansko Polje
(Basin) and Buško Jezero (Dam) in Bosnia, towards
the Cetina River in Croatia, through unexplored
cave passages under the Dinaric Alps (Kamešnica
Massif) consisting of Triassic and Jurassic lime-
stones. As most of the source sinkholes in Livansko
Polje are under high anthropogenic pressure: agri-
culture, farming, waste disposal and drainage chan-
nels of Buško Jezero Dam with the power plant in
Rumin, we consider the new species to be threat-
ened by groundwater pollution and possible habitat
alternations.

Distribution: So far known from four large karst
spring at the SE border of the Sinj Basin at the left
tributary of the Cetina River in Croatia (Fig. 1).

Remarks: As stated above, the molecular markers
confirm a very close relationship of the new spe-
cies to *M. bogici* from Taban Spring near Podgorica
(Montenegro). The different shell morphology con-
irms its position as an independent taxon separat-
ed from the type species by the distance of over 230
km. Finding the new species indicates that the genus
Montenegrosteum may be more widespread over the
Dinarides than originally supposed.

ACKNOWLEDGEMENTS

We thank the members of the Slovak Speleological
Society: GABRIEL JAKAB (Plešivec) and BRANISLAV
ŠMÍDA (Bratislava) supporting the collection of the
type material during our field trip to Bosnia in March
2017. The study was supported by a grant from the
National Science Centre (2017/25/B/NZ8/01372)
to ANDRZEJ FALNIOWSKI.

REFERENCES

BERAN L., HOFMAN S., FALNIOWSKI A. 2015. *Tannousia zrman-
jae* (Brusina, 1866) (Caenogastropoda: Truncatelloidea: Hy-

Islamia zermanica (Radoman, 1973) (Caenogastropoda: Hy-
drobiidae): morphological and molecular dis-

BICHAIN J. M., GAUBERT P., SAMADI S., BOIsSELLIER-DUBAYLE
M. C. 2007. A gleam in the dark: phylogenetic species de-
limitation in the confusing spring-snail genus *Bythinella*

DAVIS G. M., WILKE T., SPOLSKY C., QUI C. P., QUI D. C.,
oxidase I-based phylogenetic relationships among

![Figs 11–14. Species of *Montenegrosteum*: 11–12 – *M. sketi* n. sp., (holotype); 13–14 – *M. bogici* (holotype)](image-url)
the Pomatiiopsidae, Hydrobiidae, Rissoidea and Truncatellidae (Gastropoda: Caenogastropoda: Rissooidea). Malacologia 40: 251–266.

STAMATAKIS A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylog-

Received: January 15th, 2018
Revised: January 26th, 2018
Accepted: January 28th, 2018

Published on-line: March 6th, 2018