NEW RECORDS OF CLAUSILIIDAE (MOLLUSCA: GASTROPODA) IN THE DEMOCRATIC PEOPLE’S REPUBLIC OF KOREA WITH NOTES ON THEIR REPRODUCTIVE STRATEGY

EWA STWORZEWICZ1, ANNA SULIKOWSKA-DROZD2

1Institute of Systematics and Evolution of Animals, Polish Academy of Science, Sławkowska 17, 31-016 Cracow, Poland (e-mail: stworzewicz@isez.pan.krakow.pl); https://orcid.org/0000-0003-0417-5193
2University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237 Łódź, Poland (e-mail: anna.drozd@biol.uni.lodz.pl); https://orcid.org/0000-0002-2865-7130

ABSTRACT: The knowledge of clausiliid fauna of the northern part of Korean Peninsula (Democratic People’s Republic of Korea) is still fragmentary. The field survey carried out by the Cracow Institute of Systematics and Evolution of Animals, Polish Academy of Sciences in 1971–1992 provided data on the occurrence of two species: Zapatyx stimpsoni miyanagai (Kuroda, 1936) and Tauphaedusa tau (O. Boettger, 1877) in this region. The specimens of the latter species contained embryonic shells, thus confirming its viviparity. For reproductive mode assessment we used μ-CT scanning and 3D reconstructions.

KEY WORDS: land snails, Phaedusinae, viviparity, Korean Peninsula, micro-CT

INTRODUCTION

Clausiliid snails of the Far East (in traditional sense) are known from Japan, eastern China, Taiwan and the southern part of the Korean Peninsula (e.g. KWON 1990, 1993, MINATO 1994, NORDSIECK 1997, 1998, 2005). The Phaedusinae are the main group of the Far East Clausiliidae. Much information on the subfamily’s systematics, shell and genital morphology is contained in NORDSIECK’s papers (1998, 2001, 2003, 2007). He also discussed the reproduction modes (oviparity or ovoviviparity) in a large number of taxa and its taxonomic significance.

Although the land snails of Korean Peninsula have been studied since the second half of the 20th century, there is little information from its northern part. MÖLLENDORFF (1887) published a list of 26 land snail species from Korean Peninsula, including two localities near the border of the northern part of Korea with Manchuria, but the five clausiliid species listed there (Clausilia aculus Benson 1842, C. tau O. Boettger 1877, C. gottschei Moellendorff 1887, C. claviformis Pfeiffer 1850, C. belcheri Pfeiffer 1850) were found only in the southern part of the peninsula or on Korean Archipelago. He did not collect gastropods personally, but he examined materials collected by Gottsche during his trip to Korea (GOTTSCHE 1886). Similarly, PILSBRY & HIRASE (1908a), based upon the same shell collection, described several new species of land snails from Fusan (southern part of Korean Peninsula), among them one clausiliid – Euphaedusa fusaniana (as Clausilia fusaniana). The first survey of land snails of the whole Korean Peninsula was done by Kuroda (KURODA 1908, PILSBRY & HIRASE 1908b, PILSBRY 1927). Kuroda explored the northern part of the peninsula and focussed on three areas: provinces Pyongan-pukdo, Pyongan-namdo and the border of Hvanghe-pukdo and Hvanghe-namdo. Again, clausiliid snails were found only in the southern part of the peninsula and on the
Quelpart Island. In 1939 Kuroda and Miyana mentioned *Paganizaptyx miyanagai* (Kuroda, 1936) from two localities: Sanbo and Kymgang-san Mts in the northern part of Korean peninsula. Hence, only one clausiliid species was probably recorded so far from the present territory of the Democratic People’s Republic of Korea, including a record of this species in the list of land snails from DPRK (STWORZEWICZ 1997). To our knowledge, there are no other records of Clausiliidae from the territory of DPRK though the northern part of the peninsula was repeatedly subject to malacological field surveys (RIEDEL 1967, STWORZEWICZ 1997).

In this paper we present the first documented data on the occurrence of clausiliids in the northern part of the Korean Peninsula (Democratic People’s Republic of Korea) together with data on their reproductive mode.

MATERIAL AND METHODS

Clausiliids were collected during four out of the 22 zoological expeditions to DPRK carried out within the scientific exchange between the Cracow Institute of Systematics and Evolution of Animals, Polish Fig. 1. Map of the northern part of Korean Peninsula (DPRK) with distribution of localities of the collected snails. 1–11 – names of provinces: 1 – Pyongyang-si, 2 – Pyongyang-namdo, 3 – Pyongyang-pukto, 4 – Chagang-do, 5 – Ryanggang-do, 6 – Hamgyong-pukdo, 7– Hamgyong-namdo, 8 – Kangvon-do, 9 – Hwanghae-pukdo, 10 – Hwanghae-namdo, 11 – Kesong-si; empty stars – material collected by Riedel, black circles – material collected by Stworzewicz, stars covered by black circles – materials collected by Stworzewicz and by Riedel, empty circles – clausiliid shells collected by Stworzewicz and by Szęptycki (after Stworzewicz 1997, modified)
Clausiliids collected in the Democratic People’s Republic of Korea were identified as Zaptys stimpsoni miyanagai (Kuroda, 1936) and Tauphaedusa tau (O. Boettger, 1877).

The first species was previously placed in Hemiphaedusa (Hemizaptyx) Pilsbry, 1905 (Nordsieck 2007), or in Paganizaptyx Azuma, 1982 (Lee 2014). However, the latter genus is currently provisionally treated as a junior synonym of Zaptys (sensu lato) (Motochini et al. 2017) “due to the poorly resolved phylogenetic status” and we follow this view. Zaptys stimpsonii (A. Adams 1868) is a variable species with several subspecies described (Nordsieck 2007) and should be regarded as a complex of species (R. Ueshima, personal communication). From South Korea the subspecies Zaptys stimpsoni miyanagai (Kuroda, 1936) was reported (Kwon 1990).

In Kymgang-san, two shells of Z. stimpsoni miyanagai were collected from a moss-covered oak trunk. The dimensions of the individuals (one shell with broken apex and a hole on the back of the body whorl) are: shell height 11.3–11.72 mm, shell width 2.86–3.1 mm, number of whorls 7.5, aperture height: 2.41 mm, aperture width: 1.96 mm. The upper and spiral lamellae are connected, the subcollumellar lamella does not reach the aperture margin. The principal palatal fold is long and well developed, the lunella is attached to the upper palatal fold and together they form the letter t (“). The µ-CT examination revealed no embryos inside the shells (Figs 2–6). Although it is not the direct evidence of oviparity, the narrow shape of clausilium and the steeply ascending lower lamella suggest this mode of reproduction (see Nordsieck 2003).

Among the localities of Z. stimpsoni miyanagai in the Republic of Korea Kwon (1990) lists also “Oekŭmgang”, situated on the southernmost fringe of the Kymgang-san Mts., which extends up to the border of South Korea. The new locality of Z. stimpsoni miyanagai on the other side of the border (in DPRK) is the northernmost record from the Korean Peninsula. The next nearest locality of this species is known from Mt. Soyo in Gyeonggi-do (type locality), situated ca. 200 km to the south-west of the Kymgang-san (Red Data Book 2012: 56–57). The remaining known sites are Sambang and Ullŭng Island (Kwon 1990).

The second species, Tauphaedusa tau, (previously Tauphaedusa was treated as subgenus of Euphaedusa (Nordsieck 2007)) was found in Ryongak-san, in 1971, 1974 and 1991. The southern slope of the mountain is covered mainly with dry oak forest with pines, and shells (13 specimens) were collected on the ground around trunks of the old trees, among dry leaves and stones. The dimensions of the individuals are: shell height – mean 13 mm (range 11.80–14.28), shell width – 3.0 mm (range 2.87–3.20), aperture height – 2.7 mm (2.52–3.01), aperture width – 2.2 mm (2.06–2.30), number of whorls – 9.5 (range 8.75–10.25).

Three individuals were examined by µ-CT; two of them contained single embryos (shell of 2–2.5 whorls) (Figs 7–13). Thus the viviparous reproduction of this snails is unquestionable, as in the previ-
ously examined populations of *Tauphaedusa tau* from Honshu (SULIKOWSKA-DROZD et al. 2018). The apertural barriers in these shells include a broad clausilium plate and the lower lamella spirally ascending, the superior and spiral lamella connected, the inner end of the lower lamella situated close to the inner end of the spiral lamella, the plica principalis long, the upper palatal fold connected to the lunella, forming a reversed Greek letter τ, however the lunula in some shells is very weak. The structure of apertural barriers of our individuals differ significantly from that of *E. fusaniana* which features a significant gap between the superior and spiral lamella. *Tauphaedusa tau* is widespread in Japan and also introduced to the mainland China (MINATO 1994, NORDSIECK 2001). The phylogenetic relationships between *T. tau* and similar species *T. gottschei* described from Mokpo city situated in the south-western part of the Korean peninsula (MÖLLENDORFF 1887) and also found in Reisui, ca. 150 km east of Mokpo (KURODA & MIYANAGA 1943) remain to be investigated in the future taxonomic revision of the genus.

Both *Zaptyx stimpsoni miyanagai* and *Tauphaedusa tau* seem to be very rare in North Korea. Despite the careful search in most of the provinces of DPRK, only a few empty shells were found. *Z. stimpsoni miyanagai* is regarded as an endemic Korean subspecies, and is placed in the RED DATA BOOK (2012).

Figs 2–6. *Zaptyx stimpsoni miyanagai* (Kuroda, 1936) from Kymgang-san (the Diamond Mountains) in Kangvon-do province, North Korea: 2–3 – frontal and side view of the shell, 4–6 – μ-CT based reconstruction of shell: position of clausilium (4), clausilium (5), position of upper and spiral lamella (6). Scale bar (Fig. 2) 1 mm
Our study contributes to the knowledge of the land snail fauna of the North Korea. We report the localities of two clausiliid species close to the northern limits of their distribution in the continental Asia. Acquiring μ-CT images of shells allowed to identify the reproductive mode of collected snails.

Figs 7–13. Tauphaedusa tau (O. Boettger, 1877) from Ryongak-san, Pyongyang-si province, North Korea: 7–8 – frontal and side view of the shell, 9–13 – μ-CT based reconstruction of shell: position of embryo and clausilium (9), embryonic shell (10), upper and spiral lamella (11), clausilium (12), position of palatal plicae (13). Scale bar (Figs 7–9) 1 mm
ACKNOWLEDGEMENTS

We are grateful to Mr. HARTMUT NORDSIECK for his advice concerning door-snails of Korean Peninsula and the introduction to the Senckenberg collection in Frankfurt a/Main. Our thanks go to dr PIOTR DUDA (Silesian University) for performing μ-CT scanning. This analysis was financed by the National Science Centre, Poland (project number 2016/21/B/NZ8/03086) granted to ASD.

REFERENCES

Received: October 19th, 2019
Revised: December 12th, 2019
Accepted: December 17th, 2019
Published on-line: February 21st, 2020