Growth rates of the chokka squid Loligo reynaudii d’Orbigny, 1845 (Cephalopoda: Myopsida: Loliginidae) off South Africa, investigated over two years
More details
Hide details
National Marine Information and Research Centre (NatMIRC), Ministry of Fisheries and Marine Resources, Swakopmund, Namibia
Department of Ichthyology and Fisheries Science, Rhodes University, South Africa
Branch, Fisheries Management, Department of Environment, Forestry and Fisheries, Cape Town, South Africa
South African Institute of Aquatic Biodiversity (SAIAB), Grahamstown, South Africa
Submission date: 2021-03-22
Final revision date: 2021-06-14
Acceptance date: 2021-06-23
Online publication date: 2021-07-11
Corresponding author
Marek R. Lipiński   

Department of Ichthyology and Fisheries Science, Rhodes University, P.O. Box 94, 6140 Grahamstown, South Africa
Folia Malacol. 2021;29(3):153-162
Growth of adult chokka squid Loligo reynaudii d’Orbigny was modelled using mantle length and age data derived from samples collected over two years (2003 and 2004) from a single, large cohort of mature and spawning squid. A total of 588 statoliths were examined (310 males, 278 females) from individuals of 71–425 mm mantle length (ML). The maximum size of chokka squid was 425 mm ML for males and 263 mm ML for females. The Francis Growth Model and Linear Growth model were selected for further analysis from six models considered. Males and females attain similar ages, although mantle length-based daily growth rates ranged from 0.75 to 1.02 (0.88 quantile _50) mm/day for males and 0.32–0.45 (0.38 quantile _50) mm/day for females, explaining the sexual dimorphism apparent in the sizes of individuals of this species.
Alathea L. 2015. Captioner: numbers figures and creates simple captions. Available online at (accessed 25 February 2021).
Allaire J., Xie Y., McPherson J., Luraschi J., Ushey K., Atkins A., Wickham H., Cheng J., Chang W., Iannone R., Dunning A., Yasumoto A., Schloerke B., Sievert J., Dervieux C., Ryan M., Aust F., Allen J., Seo J.Y., Barrett M., Hyndman R., Lesur R., Storey R., Arslan R., Oller S. 2020. R markdown: Dynamic documents for r. Available on line at (accessed 25 February 2021).
Arkhipkin A. I. 1994. Age, growth and maturation of the squid Enoploteuthis leptura (Oegopsida: Enoploteuthidae) from the central-east Atlantic. Journal of Molluscan Studies 60: 1–8.
Arkhipkin A .I. 2004. Diversity in growth and longevity in short-lived animals: squid of the suborder Oegopsina. Marine and Freshwater Research 55: 341–355.
Arkhipkin A. [I.], Laptikhovsky V., Golub A. 1999. Population structure and growth of the squid Todarodes sagittatus (Cephalopoda: Ommastrephidae) in north-west African waters. Journal of the Marine Biological Association of the U.K. 79: 467–477.
Arkhipkin A. I., Roa-Ureta R. 2005. Identification of ontogenetic growth models for squid. Marine and Freshwater Research. 56: 371–386.
Bigelow K. A. 1992. Age and growth in paralarvae of the mesopelagic squid Abralia trigonura based on daily growth increments in statoliths. Marine Ecology Progress Series 82: 31–40.
Campana S. E. 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59: 197–242.
Elzhov T. V., Mullen K. M., Spiess A.-N., Bolker B. 2016. Minpack.lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in minpack, plus support for bounds. Available online at (accessed 25 February 2021).
Forsythe J. W., Heukelem W. F. van 1987. Growth. In: Boyle P. R. (ed.). Cephalopod life cycles. Vol. II, comparative reviews. Academic Press, London, pp.135–156.
Gonzalez A. F., Castro B. G., Guerra A. 1996. Age and growth of the short-finned squid Illex coindetii in Galician waters (NW Spain) based on statolith analysis. ICES Journal of Marine Science 53: 802–810.
Grist E. P. M., Jackson G. D. 2004. Energy balance as a determinant of two-phase growth in cephalopods. Marine and Freshwater Research 55: 395–401.
Grist E. P. M., Jackson G. D., Meekan M. G. 2011. Does a snapshot show the whole picture? Intrinsic limitations to growth inference of the short lived and fast growing. Environmental Biology of Fishes 90: 111–120.
Hatanaka H. 1986. Growth and life span of short-finned squid Illex argentinus in the waters off Argentina. Bulletin of the Japanese Society of Scientific Fisheries 52: 11–17.
Hatfield E. M. C., Hanlon R. T., Forsythe J. W., Grist E. P. M. 2001. Laboratory testing of a growth hypothesis for juvenile squid Loligo pealeii (Cephalopoda: Loliginidae). Canadian Journal of Fisheries and Aquatic Sciences 58: 845–857.
Henry L., Wickham H. 2019. Purrr: Functional programming tools. Available online at package=purrr. (Accessed 25 February 2021).
Jackson G. D. 1990. Age and growth of the tropical nearshore loliginid squid Sepioteuthis lessoniana determined from statolith growth-ring analysis. Fishery Bulletin U.S. 88: 113–118.
Jackson G. D. 1994. Application and future potential of statolith increment analysis in squids and sepioids. Canadian Journal of Fisheries and Aquatic Sciences 51: 2612–2625.
Jackson G. D. 2004. Advances in defining the life histories of myopsid squid. Marine and Freshwater Research 55: 357–365.
Jackson G. D., McGlashan D. J. (eds). 2004. Cephalopod growth. Marine and Freshwater Research 55: 327–446.
Jin Y., Li N., Chen X., Liu B., Li J. 2019. Comparative age and growth of Uroteuthis chinensis and Uroteuthis edulis from China Seas based on statolith. Aquaculture and Fisheries 4: 166–172.
Lee P. G., Turk P. E., Yang W. T., Hanlon R. T. 1994. Biological characteristics and biomedical applications of the squid Sepioteuthis lessoniana cultured through multiple generations. Biological Bulletin 186: 328–341.
Lipiński M. R. 2002. Growth of cephalopods: a conceptual model. Abhandlungen der Geologischen Bundesanstalt 57: 133–138.
Lipiński M. R., Durholtz M. D. 1994. Problems associated with ageing squid from their statoliths: towards a more structured approach. Antarctic Science 6: 215–222.
Lipiński M. R., Hampton I., Sauer W. H. H., Augustyn C. J. 1998. Daily net emigration from a spawning concentration of chokka squid (Loligo vulgaris reynaudii d’Orbigny, 1845) in Kromme Bay, South Africa. ICES Journal of Marine Science 55: 258–270.
Lipiński M. R., Mwanangombe C. H., Durholtz D., Yemane D., Githaiga-Mwicigi J., Sauer W. H. H. 2020. Age estimates of chokka squid (Loligo reynaudii d’Orbigny, 1845) off South Africa and their use to test the effectiveness of a closed season for conserving this resource. African Journal of Marine Science 42: 461–471.
Lipiński M. R., Underhill L. G. 1995. Sexual maturation in squid: quantum or continuum? South African Journal of Marine Science 15: 207–223.
Lipiński M. R., Vyver J. S. F. van der, Shaw P., Sauer W. H. H. 2016. Life cycle of chokka squid Loligo reynaudii in South African waters. African Journal of Marine Science 38: 589–593.
Moltschaniwskyj N. A. 2004. Understanding the process of growth in cephalopods. Marine and Freshwater Research 55: 379–386.
Natsukari Y., Nakanose T., Oda K. 1988. Age and growth of loliginid squid Photololigo edulis (Hoyle, 1885). Journal of the Experimental Marine Biology and Ecology 116: 177–190.
O’Dor R., Aitken J., Jackson G. D. 2005. Energy balance growth models: applications to cephalopods. Phuket Marine Biological Center Research Bulletin 66: 329–336.
Ogle D. H. 2016. Introductory fisheries analyses with R. Vol. 32. CRC Press, Boca Raton.
R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at (Accessed 25 February 2021).
Ricker W. E. 1979. Growth rates and models. In: Hoar W. S., Randall D. J., Brett J. R. (eds). Fish Physiology, III, Bioenergetics and Growth, Academic Press, New York, pp. 677–743.
Robinson D., Hayes A. 2020. Broom: Convert statistical analysis objects into tidy tibbles. Available online at (Accessed 25 February 2021).
Sauer W. H. H., Smale M. J., Lipiński M. R. 1992. The location of the spawning grounds, spawning and schooling behaviour of the squid Loligo vulgaris reynaudii (Cephalopoda: Myopsida) off the Eastern Cape coast, South Africa. Marine Biology 114: 97–107.
Sauer W. H. H., Downey N. J., Lipiński M. R., Roberts M. J., Smale M. J., Shaw P., Glazer J., Melo Y. 2013. Loligo reynaudii, Chokka Squid. In: Rosa R., O’Dor R., Pierce G. (eds). Advances in squid biology, ecology and fisheries. Part 1. Nova Science Publishers, Inc., Hauppauge, New York, pp. 33–64.
Schwarz R., Perez J. A. A. 2010. Growth model identification of short-finned squid Illex argentinus (Cephalopoda: Ommastrephidae) off southern Brazil using statoliths. Fisheries Research 106: 177–184.
Vidal E. A. G., DiMarco F. P., Wormuth J. H., Lee P. G. 2002. Influence of temperature and food availability on survival, growth and yolk utilization in hatchling squid. Bulletin of Marine Science 71: 915–931.
Vyver J. S. F. van der, Sauer W. H. H., McKeown N. J., Yemane D., Shaw P. W., Lipiński M. R. 2016. Phenotypic divergence despite high gene flow in chokka squid Loligo reynaudii (Cephalopoda: Loliginidae): implications for fishery management. Journal of the Marine Biological Association of the United Kingdom 96: 1507–1525.
Wickham H., Chang W., Henry L., Pedersen T. L., Takahashi K., Wilke C., Woo K., Yutani H., Dunnington D. 2020a. Ggplot2: Create elegant data visualisations using the grammar of graphics. Available online at (Accessed 25 February 2021).
Wickham H., Francois R., Henry L., Müller K. 2020b. Dplyr: A grammar of data manipulation. Available online at (Accessed 25 February 2021).
Xie Y. 2020. Knitr: A general-purpose package for dynamic report generation in r. Available online at (Accessed on 25 February 2021).
Yang W. T., Hixon R. F., Turk P. E., Krejci M. E., Hulet W. H., Hanlon R. T. 1986. Growth, behavior, and sexual maturation of the market squid, Loligo opalescens, cultured through the life cycle. Fishery Bulletin U.S. 84: 771–798.
Journals System - logo
Scroll to top