RESEARCH PAPER
No effects of waterproof marking on the behaviour and growth of Physa acuta Draparnaud, 1805 (Gastropoda: Hygrophila: Physidae) in the laboratory
 
More details
Hide details
1
Limno Consulting, Rome, Italy
2
Department of Medicine and Life Sciences (MESVA), Coppito Science Centre, University of L’Aquila, Italy
3
Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, Nicolaus Copernicus University in Toruń, Poland
CORRESPONDING AUTHOR
Paola Lombardo   

Limno Consulting, via Bedollo 303, I-00124 Rome, Italy
Submission date: 2021-02-10
Final revision date: 2021-04-28
Acceptance date: 2021-05-06
Online publication date: 2021-05-25
Publication date: 2021-06-04
 
Folia Malacol. 2021;29(2):121–131
 
KEYWORDS
ABSTRACT
Physa acuta Draparnaud, 1805 is one of the most common freshwater gastropod species, with worldwide distribution. It is an effective periphyton grazer and a potential keystone species in shallow-water systems, where it can boost macrophyte well-being and thus help maintain high water clarity even in nutrient-rich habitats. P. acuta also has been extensively studied in ecotoxicological and behavioural investigations. Such investigations may require observations on individual snails. A method to distinguish individual snails in small-scale experiments is marking their shells with paint dots. However, such marking must not influence snail behaviour (nutritional, reproductive, respiratory, etc.) or growth to avoid confounding effects. Earlier investigations point to no or very limited effects of marking on aquatic and terrestrial snail survival, behaviour, and growth. We tested whether marking could affect the behaviour (as snail activity) and growth of P. acuta using a waterproof, oil-based, non-toxic, fine-point car-body paint marker. Snails were divided into a “marked” and an “unmarked” (control) group of ten snails each in an eight-day experiment. The marking had no effect on the snail activity or growth. The snails survived the experiment and produced egg clutches well beyond the eight-day period. The marking persisted without fading during and beyond the experimental period. Our results support earlier findings that the use of oil-based, non-toxic markers can assist in carrying out reliable observations on individual snails, including the small-bodied P. acuta. Combinations of two dots of different colours allow simultaneous observations on a high number of replicate individuals.
 
REFERENCES (60)
1.
Anderson R. 2003. Physella (Costatella) acuta Draparnaud in Britain and Ireland, its taxonomy, origins and relationship to other introduced Physidae. Journal of Conchology 38: 7–21.
 
2.
Auld J. R., Relyea R. A. 2008. Are there interactive effects of mate availability and predation risk on life history and defence in a simultaneous hermaphrodite? Journal of Evolutionary Biology 21: 1371–1378. https://doi.org/10.1111/j.1420....
 
3.
Baker G. H. 1988. Dispersal of Theba pisana (Mollusca: Helicidae). Journal of Applied Ecology 25: 889–900. https://doi.org/10.2307/240375....
 
4.
Baminger H. 2000. Effects of passive transponder used for individual marking on mating propensity in Arianta arbustorum (Helicidae, Gastropoda). Arianta 3: 39–46.
 
5.
Burks R. L., Lodge D. M., Jeppesen E., Lauridsen T. L. 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365. https://doi.org/10.1046/j.1365....
 
6.
Burris J. A., Bamford M. S., Stewart A. J. 1990. Behavioral responses of marked snails as indicators of water quality. Environmental Toxicology and Chemistry 9: 69–76. https://doi.org/10.1002/etc.56....
 
7.
Cattaneo A., Kalff J. 1986. The effect of grazer size manipulation on periphyton communities. Oecologia 69: 612–617. https://doi.org/10.1007/BF0041....
 
8.
Chaudry M., Morgan E. 1987. Factors affecting the growth and fecundity of Bulinus tropicus (Krauss) (Gastropoda). Journal of Molluscan Studies 53: 52–61. https://doi.org/10.1093/mollus....
 
9.
Cianfanelli S., Lori E., Bodon M. 2007. Non-indigenous freshwater molluscs and their distribution in Italy. In: Gherardi F. (ed.). Biological invaders in inland waters: Profiles, distribution and threats. Springer, Dordrecht, NL, pp. 103–121. https://doi.org/10.1007/978-1-....
 
10.
Coutellec M.-A., Caquet T. 2011. Heterosis and inbreeding depression in bottlenecked populations: a test in the hermaphroditic freshwater snail Lymnaea stagnalis. Journal of Evolutionary Biology 24: 2248–2257. https://doi.org/10.1111/j.1420....
 
11.
Crowl T. A., Covich A. P. 1990. Predator-induced life history shifts in a freshwater snail. Science 247: 949–951. https://doi.org/10.1126/scienc....
 
12.
De Wit W. F. 1955. The life cycle and some other biological details of the fresh-water snail Physa fontinalis (L.). Basteria 19: 35–73.
 
13.
Dillon R. T. Jr. 2000. The ecology of freshwater molluscs. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO978....
 
14.
Dillon R. T. Jr., Wethington A. R., Rhett J. M., Smith T. P. 2002. Populations of the European freshwater pulmonate Physa acuta are not reproductively isolated from American Physa heterostropha or Physa integra. Invertebrate Biology 121: 226–234. https://doi.org/10.1111/j.1744....
 
15.
Doyle R. D., Smart R. M. 1998. Competitive reduction of noxious Lyngbya wollei mats by rooted aquatic plants. Aquatic Botany 61: 17–32. https://doi.org/10.1016/S0304-....
 
16.
Elger A., Lemoine D. 2005. Determinants of macrophyte palatability to the pond snail Lymnaea stagnalis. Freshwater Biology 50: 86–95. https://doi.org/10.1111/j.1365....
 
17.
Evangelista M., Vallinotto E. 2009. Indagine preliminare sugli invertebrati nel Sito di Importanza Comunitaria IT1110035 “Stagni di Poirino-Favari,” Relazione Tecnica preparata per l’Associazione onlus Natura Cascina Bellezza, con la collaborazione del World Wildlife Fund.
 
18.
Fenwick B., Amin M. A. 1983. Marking snails with nail varnish as a field experimental technique. Annals of Tropical Medicine and Parasitology 77: 387–390. https://doi.org/10.1080/000349....
 
19.
Frodge J. D., Thomas G. L., Pauley G. B. 1990. Effects of canopy formation by floating and submergent aquatic macrophytes on the water quality of two shallow Pacific Northwest lakes. Aquatic Botany 38: 231–248. https://doi.org/10.1016/0304-3....
 
20.
Gérard C. 2001. Structure and temporal variation of trematode and gastropod communities in a freshwater ecosystem. Parasite 8: 275–287. https://doi.org/10.1051/parasi....
 
21.
Goater T. M., Shostak A. W., Williams J. A., Esch G. W. 1989. A mark–recapture study of trematode parasitism in overwintered Helisoma anceps (Pulmonata), with special reference to Halipegus occidualis (Hemiuridae). Journal of Parasitology 75: 553–560. https://doi.org/10.2307/328290....
 
22.
Gosselin L. A. 1993. A method for marking small juvenile gastropods. Journal of the Marine Biological Association of the United Kingdom 73: 963–966. https://doi.org/10.1017/S00253....
 
23.
Gross E. M., Lombardo P. 2018. Limited effect of gizzard sand on consumption of the macrophyte Myriophyllum spicatum by the great pond snail Lymnaea stagnalis. Hydrobiologia 812: 131–145. https://doi.org/10.1007/s10750....
 
24.
Häderer I. K., Werminghausen J., Michiels N. K., Timmermeyer N., Anthes N. 2009. No effect of mate novelty on sexual motivation in the freshwater snail Biomphalaria glabrata. Frontiers in Zoology 6: 23. https://doi.org/10.1186/1742-9....
 
25.
Heidinger I. M. M., Poethke H.-J., Bonte D., Hein S. 2009. The effect of translocation on movement behaviour—A test of the assumptions of behavioural studies. Behavioural Processes 82: 12–17. https://doi.org/10.1016/j.bepr....
 
26.
Henry P.-Y., Jarne P. 2007. Marking hard-shelled gastropods: tag loss, impact on life history traits, and perspectives in biology. Invertebrate Biology 126: 138–153. https://doi.org/10.1111/j.1744....
 
27.
Jasser I. 1995. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia 306: 21–32. https://doi.org/10.1007/BF0000....
 
28.
Jones J. I., Eaton J. W., Hardwick K. 2000. The influence of periphyton on boundary layer conditions: a pH microelectrode investigation. Aquatic Botany 67: 191–206. https://doi.org/10.1016/S0304-....
 
29.
Jones J. I., Young J. O., Haynes G. M., Moss B., Eaton J. W., Hardwick K. J. 1999. Do submerged aquatic plants influence their periphyton to enhance the growth and reproduction of invertebrate mutualists? Oecologia 120: 463–474. https://doi.org/10.1007/s00442....
 
30.
Körner S., Nicklisch A. 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. Journal of Phycology 38: 862–871. https://doi.org/10.1046/j.1529....
 
31.
Lombardo P. 2001. Effects of freshwater gastropods on epiphyton, macrophytes, and water transparency under meso- to eutrophic conditions. PhD Dissertation. Kent State University, Kent, OH.
 
32.
Lombardo P., Miccoli F. P., Giustini M., Cicolani B. 2010. Diel activity cycles of freshwater gastropods under natural light: patterns and ecological implications. Annales de Limnologie – International Journal of Limnologie 46: 29–40. https://doi.org/10.1051/limn/2....
 
33.
Includes Supplementary Material and an Erratum/Addendum [Ann. Limn. 47 (2011): 395–396]. https://doi.org/10.1051/limn/2....
 
34.
Lombardo P., Mjelde M., Källqvist T., Brettum P. 2013. Seasonal and scale-dependent variability in nutrient- and allelopathy-mediated macrophyte–phytoplankton interactions. Knowledge and Management of Aquatic Ecosystems 409: 10. https://doi.org/10.1051/kmae/2....
 
35.
Lowe R. L., Hunter R. D. 1988. Effect of grazing by Physa integra on periphyton community structure. Journal of the North American Benthological Society 7: 29–36. https://doi.org/10.2307/146782....
 
36.
Lydeard C., Campbell D., Golz M. 2016. Physa acuta Draparnaud, 1805 should be treated as a native of North America, not Europe. Malacologia 59: 347–350. https://doi.org/10.4002/040.05....
 
37.
McCollum E. W., Crowder L. B., McCollum S. A. 1998. Complex interactions of fish, snails, and littoral zone periphyton. Ecology 79: 1980–1994. https://doi.org/10.1890/0012-9....
 
38.
McRae M., Lepitzki D. A. W. 1994. Population estimation of the snail Bithynia tentaculata (Gastropoda: Prosobranchia) using mark–recapture and the examination of snail movement in pools. Canadian Field Naturalist 108: 58–66.
 
39.
Michalik-Kucharz A. 2008. The occurrence and distribution of freshwater snails in a heavily industrialised region of Poland (Upper Silesia). Limnologica 38: 43–55. https://doi.org/10.1016/j.limn....
 
40.
Morton J. P., Silliman B. R. 2020. Parasites enhance resistance to drought in a coastal ecosystem. Ecology 101(1): e02897. https://doi.org/10.1002/ecy.28....
 
41.
Newman R. M. 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. Journal of the North American Benthological Society 10: 89–114. https://doi.org/10.2307/146757....
 
42.
O’Keeffe J. H. 1985. Population biology of the freshwater snail Bulinus globosus on the Kenya coast. 1. Population fluctuations in relation to climate. Journal of Applied Ecology 22: 73–84. https://doi.org/10.2307/240332....
 
43.
Peckarsky B. L., Cowan C. A. 1995. Microhabitat and activity periodicity of predatory stoneflies and their mayfly prey in a western Colorado stream. Oikos 74: 513–521. https://doi.org/10.2307/354599....
 
44.
Pęczuła W., Mieczan T., Tarkowska-Kukuryk M. 2017. Distribution of planktonic crustaceans and its diurnal changes in a hypertrophic shallow lake: does the switch from turbid-water state to clear-water state matters? Annales de Limnologie – International Journal of Limnology 53: 369–376. https://doi.org/10.1051/limn/2....
 
45.
Perrin N. 1986. Les paramètres du cycle vital de Physa acuta (Gastropoda, Mollusca) en milieu expérimental. Revue Suisse de Zoologie 93: 725–736. https://doi.org/10.5962/bhl.pa....
 
46.
Pieczyńska E. 2003. Effect of damage by the snail Lymnaea (Lymnaea) stagnalis (L.) on the growth of Elodea canadensis Michx. Aquatic Botany 75: 137–145. https://doi.org/10.1016/S0304-....
 
47.
Rid S. 2008. Herbivorie von Lymnaea stagnalis an Wasserpflanzen. Staatsexamensarbeit (report/thesis for final scientific internship as secondary school teacher). University of Konstanz, Konstanz, Germany.
 
48.
Soszka G. J. 1975. Ecological relations between invertebrates and submerged macrophytes in the lake littoral. Ekologia Polska 23: 393–415.
 
49.
Spyra A., Cieplok A., Strzelec M., Babczyńska A. 2019. Freshwater alien species Physella acuta (Draparnaud, 1805) – A possible model for bioaccumulation of heavy metals. Ecotoxicology and Environmental Safety 185: 109703. https://doi.org/10.1016/j.ecoe....
 
50.
Tariel J., Luquet É., Plénet S. 2020. Interactions between maternal, paternal, developmental, and immediate environmental effects on anti-predator behavior of the snail Physa acuta. Frontiers in Ecology and Evolution 08: 591074. https://doi.org/10.3389/fevo.2....
 
51.
Ter Maat A., Pieneman A. W., Koene J. M. 2012. The effect of light on induced egg laying in the simultaneous hermaphrodite Lymnaea stagnalis. Journal of Molluscan Studies 78: 262–267. https://doi.org/10.1093/mollus....
 
52.
Toledo R., Muñoz-Antoli C., Pérez M., Esteban J. G. 1998. Larval trematode infections in freshwater gastropods from the Albufera Natural Park in Spain. Journal of Helminthology 72: 79–82. https://doi.org/10.1017/S00221....
 
53.
Tóth V. R. 2013. The effect of periphyton on the light environment and production of Potamogeton perfoliatus L. in the mesotrophic basin of Lake Balaton. Aquatic Sciences 75: 523–534. https://doi.org/10.1007/s00027....
 
54.
Underwood A. J. 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO978....
 
55.
van der Steen W. J. 1967. The influence of environmental factors on the oviposition of Lymnaea stagnalis (L.) under laboratory conditions. Archives Néerlandaises de Zoologie 17: 403–468. https://doi.org/10.1163/036551....
 
56.
Vermaat J. E., Santamaría L., Roos P. J. 2000. Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Archiv für Hydrobiologie 148: 549–562. https://doi.org/10.1127/archiv....
 
57.
Vinarski M. 2017. The history of an invasion: phases of the explosive spread of the physid snail Physella acuta through Europe, Transcaucasia and Central Asia. Biological Invasions 19: 1299–1314. https://doi.org/10.1007/s10530....
 
58.
Wethington A. R., Lydeard C. 2007. A molecular phylogeny of Physidae (Gastropoda: Basommatophora) based on mitochondrial DNA sequences. Journal of Molluscan Studies 73: 241–257. https://doi.org/10.1093/mollus....
 
59.
Zar J. H. 2009. Biostatistical analysis, 5th ed. Prentice Hall / Pearson, Upper Saddle Creek, NJ.
 
60.
Zhang P., van Leeuwen C. H. A., Bogers D., Poelma M., Xu J., Bakker E. S. 2020. Ectothermic omnivores increase herbivory in response to rising temperature. Oikos 129: 1028–1039. https://doi.org/10.1111/oik.07....
 
eISSN:2300-7125
ISSN:1506-7629