RESEARCH PAPER
Susceptibility of field bean cultivars to slug damage
 
More details
Hide details
1
Department of Zoology, Institute of Plant Protection – National Research Institute, Poznań, Poland
 
2
Department of Mathematical and Statistical Methods, Poznań University of Life Sciences
 
 
Submission date: 2017-07-27
 
 
Final revision date: 2017-11-06
 
 
Acceptance date: 2017-11-12
 
 
Publication date: 2017-12-01
 
 
Folia Malacol. 2017;25(4):273-280
 
KEYWORDS
ABSTRACT
In recent years field bean crops (Vicia faba) have been frequently attacked by slugs. As there are no molluscicides registered for protection of field beans against slugs, alternative anti-slug measures are needed. One of them may be using specific cultivar properties of the plant. The aim of the study was to assess the susceptibility of different field bean cultivars to damage by slugs and to identify the effect of tannin content in plants on the extent of damage. The experiments were performed in the laboratory and in experimental plot conditions on seeds and plants at stages of 3–4 and 5–6 true leaves, which were exposed to Arion vulgaris (Moquin-Tandon) and A. rufus (Linnaeus). The extent of damage was analysed in four cultivars with low seed tannin content and five with high seed tannin content. The extent of damage to the seeds and plants varied depending on the cultivar and the slug species. The plants of the high-tannin Optimal cultivar were less susceptible to damage.
 
REFERENCES (43)
1.
Aguiar R., Wink M. 1999. Mollusc-deterrent activity of lupin alkaloids. Proceedings 9th International Lupin Conference. Klink/Mültriz, International Lupin Association, 20–24 June 1999, Canterbury, New Zeeland: 97–98.
 
2.
Airey W. J., Henderson I. F., Pickett J. A., Scott G. C., Stephenson J. W., Woodcock C. M. 1989. Novel chemical approaches to mollusc control. In: Henderson I. F. (ed.). Slugs and snails in world agriculture. Monograph 41, British Crop Protection Council, Thornton Heath, pp. 301–307.
 
3.
Albrectsen B. R., Gardfjell H., Orians C. M., Murray B., Fritz R. S. 2004. Slugs, willow seedlings and nutrient fertilization: intrinsic vigor inversely affects palatability. Oikos 105: 268–278. https://doi.org/10.1111/j.0030....
 
4.
Barlow S. E., Close A. J., Port G. R. 2013. The acceptability of meadow plants to the slug Deroceras reticulatum and implications for grassland restoration. Ann. Bot. 112: 721–730. https://doi.org/10.1093/aob/mc....
 
5.
Bond D. A., Duc G. 1993. Plant breeding as a means of reducing antinutritional factors in grain legumes. In: van der Poel A. F. B., Huisman J., Saini H. S. (eds). Proceedings of the Second International Workshop on ‘Antinutritional factors (ANFs) in legume seeds’, Wageningen, The Netherlands, 1–3 December 1993, pp. 379–396.
 
6.
Briner T., Frank T. 1998. The palatability of 78 wildflower strip plants to the slug Arion ­lusitanicus. Ann. Appl. Biol. 133: 123–133. https://doi.org/10.1111/j.1744....
 
7.
Brooks A. S., Crook M. J., Wilcox A., Cook R. T. 2003. A laboratory evaluation of the palatability of legumes to the field slug Deroceras reticulatum Müller. Pest Manag. Sci. 59: 245–251. https://doi.org/10.1002/ps.658.
 
8.
Burgess R. S. L., Ennos R. A. 1987. Selective grazing of acyanogenic white clover: variation in behaviour among populations of the slug Deroceras reticulatum. Oecologia 73: 432–435. https://doi.org/10.1007/BF0038....
 
9.
Byers R. A. 2002. Agriolimacidae and Arionidae as pests in lucerne and other legumes in forage systems of north-eastern North America. In: Barker G. M. (ed.). Molluscs as crop pests. CABI, Hamilton, New Zealand, pp. 325–335. https://doi.org/10.1079/978085....
 
10.
Cates R. G., Orians G. H. 1975. Successional status and palatability of plants to generalized herbivores. Ecology 56: 410–418. https://doi.org/10.2307/193497....
 
11.
Chevalier L., Desbuquois C., Papineau J., Charrier M. 2000. Influence of the quinolizidine alkaloid content of Lupinus albus (Fabaceae) on the feeding choice of Helix aspersa (Gastropoda: Pulmonata). J. Mollus. Stud. 66: 61–68. https://doi.org/10.1093/mollus....
 
12.
Clark S. J., Dodds C. J., Henderson I. F., Martin A. P. 1997. A bioassay for screening materials influencing feeding in the field slug Deroceras reticulatum (Müller) (Mollusca: Pulmonata). Ann. Appl. Biol. 130: 379–385. https://doi.org/10.1111/j.1744....
 
13.
Clark S. J., Dodds C. J., Henderson I. F., Martin A. P. 1999. Use of lichen secondary metabolites as antifeedants to protect higher plants from damage caused by slug feeding. Ann. Appl. Biol. 134: 101–108. https://doi.org/10.1111/j.1744....
 
14.
Cook R. T., Bailey S. E. R., McCrohan C. R. 1996. Slug preferences for winter wheat cultivars and common agricultural weeds. J. Appl. Ecol. 33: 866–872. https://doi.org/10.2307/240495....
 
15.
Desbuquois C., Daguzan J. 1995. The influence of ingestive conditioning on food choice in the land snail Helix aspersa Müller (Gastropoda: Pulmonata: Stylommatophora). J. Mollus. Stud. 61: 353–360. https://doi.org/10.1093/mollus....
 
16.
Dirzo R. 1980. Experimental studies on slug-plant interactions. I. The acceptability of thirty plant species to the slug Agriolimax caruanae. J. Ecol. 68: 981–998. https://doi.org/10.2307/225947....
 
17.
Dirzo R., Harper J. L. 1982a. Experimental studies on slug–plant interactions. III. Differences in the acceptability of individual plants of Trifolium repens to slugs and snails. J. Ecol. 70: 101–117. https://doi.org/10.2307/225986....
 
18.
Dirzo R., Harper J. L. 1982b. Experimental studies on slug–plant interactions. IV. The performance of cyanogenic and acyanogenic morphs of Trifolium repens in the field. J. Ecol. 70: 119–138.
 
19.
Domański P. J., Osiecka A. 2014. Pastewne. In: Gacek E. S. (ed.). Lista opisowa odmian roślin rolniczych 2014: burak, ziemniak, oleiste i włókniste pastewne. COBORU, Słupia Wielka, pp. 105–135.
 
20.
Douglas M. R., Tooker J. 2012. Slug (Mollusca: Agriolimacidae, Arionidae) ecology and management in no-till field crops, with an emphasis on mid-Atlantic region. J. Integr. Pest Manag. 3: C1–C9. https://doi.org/10.1603/IPM110....
 
21.
Frank T. 2003. Influence of slug herbivory on the vegetation development in an experimental wildflower strip. Basic Appl. Ecol. 4: 139–147. https://doi.org/10.1078/1439-1....
 
22.
Frank T., Friedli J. 1999. Laboratory food choice trials to explore the potential of common weeds to reduce slug feeding on oilseed rape. Biol. Agric. Hortic. 17: 19–29. https://doi.org/10.1080/014487....
 
23.
Fritz R. S., Hochwender C. G., Lewkiewicz D. A., Bothwell S., Orians C. M. 2001. Seedling herbivory by slugs in a willow hybrid system: developmental changes in damage, chemical defense, and plant performance. Oecologia 129: 87–97. https://doi.org/10.1007/s00442....
 
24.
Gebauer J. 2002. Survival and food choice of the grey field slug (Deroceras reticulatum) on three different seed types under laboratory conditions. Anz. Schädlingskd. Pfl. Umwelt 75: 1–5.
 
25.
Glen D. M., Jones H., Fieldsend J. K. 1990. Damage to oilseed rape seedlings by the field slug Deroceras reticulatum in relation to glucosinolate concentration. Ann. Appl. Biol. 117: 197–207. https://doi.org/10.1111/j.1744....
 
26.
Glen D. M., Moens R. 2002. Agriolimacidae, Arionidae and Milacidae as pests in West European cereals. In: Barker G. M. (ed.). Molluscs as crop pests. CABI, Hamilton, New Zealand, pp. 271–300. https://doi.org/10.1079/978085....
 
27.
Hanley M. E., Fenner M., Edwards P. J. 1995. The effect of seedling age on the likelihood of herbivory by the slug Deroceras reticulatum. Funct. Ecol. 9: 754–759. https://doi.org/10.2307/239024....
 
28.
Jennings T. J., Barkham J. P. 1975. Food of slugs in mixed deciduous woodland. Oikos 26: 211–221. https://doi.org/10.2307/354371....
 
29.
Keller M., Kollmann J., Edwards P. J. 1999. Palatability of weeds from different European origins to the slugs Deroceras reticulatum Müller and Arion lusitanicus Mabille. Acta Oecol. 20: 109–118. https://doi.org/10.1016/S1146-....
 
30.
Kigel J. 1995. Seed development and germination. In: Boesewinkel F. D., Boumann F. (eds). The seed: structure and function. Hebrew University of Jerusalem Rehovot, Israel and Gad Gailili Weizmann Institute of Science Rehovot, Israel, pp. 7–13.
 
31.
Kloos H., McCullough F. S. 1982. Plant molluscicides. Planta Med. 46: 195–209. https://doi.org/10.1055/s-2007....
 
32.
Kozłowski J., Jaskulska M., Kozłowska M. 2016). Stopień uszkodzenia roślin różnych odmian bobiku (Vicia faba L.) i grochu (Pisum sativum L.) przez Deroceras reticulatum (O. F. Müller). Prog. Plant Prot. 56: 120–124.
 
33.
Meredith R. H. 2003. Slug pellets – risks and benefits in perspective. In: Dussart G. B. J. (ed.). Slug and snails: agricultural, veterinary and environmental perspectives. British Crop Protection Conference, Symposium Proceedings No. 88, 2003, Canterbury, UK, pp. 235–242.
 
34.
Moens R., Couvreur R., Cors F. 1992. Influence de la teneur en glucosinolates des variétés de colza d’hiver sur les Dégâts de limaces. B. Rech. Agronom. Gembloux 27: 289–307.
 
35.
Mølgaard P. 1986. Food plant preferences by slugs and snails: a simple method to evaluate the relative palatability of the food plants. Biochem. Syst. Ecol. 14: 113–121. https://doi.org/10.1016/0305-1....
 
36.
Port R., Ester A. 2002. Gastropods as pests in vegetables and ornamental crops in Western Europe. In: Barker G. M. (ed.). Molluscs as crop pests. CABI, Hamilton, New Zealand, pp. 337–352. https://doi.org/10.1079/978085....
 
37.
Runham N. W., Hunter P. J. 1970. Terrestrial slugs. Hutchinson and Co. Ltd., London.
 
38.
South A. 1992. Terrestrial slugs: biology, ecology, and control. Chapman and Hall, London. https://doi.org/10.1007/978-94....
 
39.
Speiser B., Harmatha J., Rowell-Rahier M. 1992. Effects of pyrrolizidine alkaloids and sesquiterpenes on snail feeding. Oecologia 92: 257–265. https://doi.org/10.1007/BF0031....
 
40.
Stahl E. 1988. Pflanzen und Schnecken. Jenaische Z. Med. Naturwiss. 22: 557–684.
 
41.
Webbe G., Lambert J. D. H. 1983. Plants that kill snails and prospects for disease control. Nature 302: 754. https://doi.org/10.1038/302754....
 
42.
Wilson M. J., Glen D. M., George S. K. 1993. The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontrol Sci. Techn. 3: 503–511. https://doi.org/10.1080/095831....
 
43.
Winfield A. L., Wardlow L. R., Smith B. F. 1967. Further observations on the susceptibility of maincrop potato cultivars to slug damage. Plant Pathol. 16: 136–138. https://doi.org/10.1111/j.1365....
 
 
CITATIONS (2):
1.
Biological control of pestiferous slugs using Tetanocera elata (Fabricius) (Diptera: Sciomyzidae): Larval behavior and feeding on slugs exposed to Phasmarhabditis hermaphrodita (Schneider, 1859)
Karzan Ahmed, Claire Stephens, Allison Bistline-East, Christopher Williams, Donnell Mc, Manuela Carnaghi, Daire Huallacháin, Michael Gormally
Biological Control
 
2.
Influence of aromatic substances on locomotor activity of Deroceras agreste slugs
M. Remezok, T. Kolombar, O. Parhomenko, V. Brygadyrenko
Regulatory Mechanisms in Biosystems
 
eISSN:2300-7125
ISSN:1506-7629
Journals System - logo
Scroll to top