Morphometrics and mineral composition of shell whorls in three species of giant African snails from Abeokuta, Nigeria
More details
Hide details
Federal University of Agriculture, Abeokuta, Nigeria
University of Uyo, Nigeria
Submission date: 2016-02-02
Final revision date: 2016-05-12
Acceptance date: 2016-05-17
Publication date: 2016-06-12
Corresponding author
Kehinde Ademolu   

Federal University of Agriculture, Abeokuta, Alabata, 100011 Abeokuta, Nigeria
Folia Malacol. 2016;24(2):81-84
Archachatina marginata (Swainson), Achatina achatina (Linnaeus) and Achatina fulica Bowdich were examined for their shell whorl morphometrics (20 snails per species) and the calcium, iron and phosphorus content in the shell whorls (10 snails per species). The species differed in the degree of shell mineralization (the highest in the medium-sized A. achatina, intermediate in the smallest-sized A. fulica and the smallest in the largest-sized A. marginata) which was not age- or environment-dependent, since all the experimental snails were 12 months old adults of 6 whorls, originating from the same snail farm. In all three species the degree of shell mineralization decreased from the apical (oldest) to the body (youngest) whorl, thus depending entirely on the whorl's age. The inter-specific differences in calcium content should be considered when using shells for medical or agricultural purposes.
Ademolu K. O., Akintola M. Y., Olanloye A. O., Adelabu B. A. 2015. Traditional utilization and biochemical composition of six mollusc shells in Nigeria. Rev. Biol. Trop. 63: 459–464.
Ademolu K. O., Idowu A. B., Jayeola O. A. 2008. Reproductive tract assessment of three common African land snails. Trop. J. Animal Sci. 10: 81–83.
Ademolu K. O., Idowu A. B., Mafiana C. F., Osinowo O. A. 2007. Performance, proximate and mineral analysis of African giant land snail (Archachatina marginata) fed on different nitrogen sources. Tropical Veterinarian 25: 124–131.
Agbelusi E. A., Ejidike B. N. 1992. Utilization of the giant African land snail, Archachatina marginata in the humid area of Nigeria. J. Trop. Agricult. 69: 88–92.
Aluko F. A., Adisa A. A., Taiwo B., Ogungbesan A. M., Awojobi H. A. 2014. Quantitative measurements of two breeds of snails. Am. J. Res. Comm. 2: 175–182.
Amubode A. A., Fafunwa F. 2014. Snail farming and hospitality industries. In: Abiona J. A., Osunsina I. O. (eds). Proceedings of the 3rd International Conference on Giant African Land Snails (NeTGALS). Federal College of Education, Abeokuta, Nigeria, pp. 31–36.
Amusan J. A., Omidiji M. O. 1999. Edible land snails. A technical guide to snail farming in the Tropics. Verity Printers, Ibadan.
A.O.A.C. 1980. Official methods of analysis – A.O.A.C. 13th edition, Horwitz W. (ed.), Association of Official Analytical Chemists, Washington, D.C.
Barker G. M. (ed.) 2001. The biology of terrestrial molluscs. CAB International, Hamilton, New Zealand.
Baur B. 1994. Parental care in terrestrial gastropods. Experientia 50: 5–14.
Beeby A., Richmond L. 2007. Differential growth rates and calcium-allocation strategies in the garden snail Cantareus aspersus. J. Mollus. Stud. 73: 105–112.
Cobbinah J. R., Vink A., Onwuka B. 2008. Snail farming: production, processing and marketing. Agromisa Foundation, Wageningen, Netherlands, pp. 12–15.
Gärdenfors U., Bignert A., Carell B., Forberg S., Mutvei H., Westermark T. 1993. Elemental composition of same snail shells (Mollusca, Gastropoda) and observations of environmental interest. Abstracts, International Symposium on Biomineralization N°7, Monaco, Monaco, 17 November 1993: 432.
Heller J. 1990. Longevity in molluscs. Malacologia 31: 259–295.
Heller J. 2015. Sea snails: a natural history. Springer International Publishing, Switzerland.
Houndonougbo M. F., Chrysotome C. A., Odoulami R. C., Codjia J. T. 2012. Snail shell as efficient mineral feedstuff for layer hens: effects and optimum rate. Livestock Res. Rural Dev. 24: 1–7.
Idowu A. B., Somide O. M., Ademolu K. O. 2008. Comparative analysis of the chemical composition of the haemolyph, flesh and the microflora content of the guts of some African land snails in Abeokuta Nigeria. Tropical Veterinarian 26: 20–29.
Jordaens K., De Wolf H., Vandecasteele B., Blust R., Backeljau T. 2006. Associations between shell strength, shell morphology and heavy metals in the land snail Cepaea nemoralis (Gastropoda, Helicidae). Sci. Total Environ. 363: 285–293.
Larsson B., Tjälve H. 1978. Studies on the melanin-affinity of metal ions. Acta Physiol. Scand. 104: 479–484.
Mierzwa D. 2008. Chemical composition and structure of the shell of Cepaea vindobonensis (Férussac, 1821) (Gastropoda: Pulmonata: Helicidae). Folia Malacol. 16: 17–20.
Simonová J., Simon O. P., Kapic Š., Nehasil L., Horsák M. 2016. Medium sized forest snails survive passage through birds digestive tract and adhere strongly to birds legs: more evidence for passive dispersal mechanism. J. Mollus. Stud. (in press).
Solem G. A. 1974. The shell makers. Introducing mollusks. John Wiley & Sons, New York, London, Sydney, Toronto.
Yoloye V. I. 1994. Basic invertebrate zoology. Code and Quanta, Lagos, Nigeria.
Allometry and geographic variation of the morphology of Achatina fulica (Achatinidae) in Colombia
Angie Patiño-Montoya, Oscar Murillo-García, Alan Giraldo
Molluscan Research
Approaches to land snail shell bead manufacture in the Early Holocene of Malawi
Jennifer Miller, Hannah Keller, Claire Heckel, Potiphar Kaliba, Jessica Thompson
Archaeological and Anthropological Sciences
Snail Shell Waste Threat to Sustainability and Circular Economy: Novel Application in Food Industries
Angela Giorgia Potortì, Laura Messina, Patrizia Licata, Enrico Gugliandolo, Antonello Santini, Giuseppa Di Bella
Journals System - logo
Scroll to top