Heterogeneity of mollusc communities between and within forest fragments in a much modified floodplain landscape

Heike Kappes, e-mail: heike.kappes@uni-koeln.de

Department of Ecology, Cologne Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany

Anna Sulikowska-Drozd, e-mail: sulik@biol.uni.lodz.pl

Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
Abstract

The Rhine floodplain is much modified by human land use. What used to be the hardwood zone of the large floodplain nowadays holds only a few isolated, recent (mostly < 60 years) forest patches. The aim of the study was to check if the circumstances favoured homogeneity of the snail communities, usually observed within floodplains, or if heterogeneity prevailed. We inventoried molluscs (presence-absence) in 21 sites within and 18 sites adjacent to a stretch of the Lower Rhine floodplain (total 39 sites). Communities from eight of the sites were quantitatively sampled for within-site analyses. Species turnover occurred with distance from the Rhine, partially along with lateral habitat turnover. Introduced species mainly occurred in young forests, in similar numbers within and beyond the floodplain. Old forests beyond the floodplain had a small number of introduced species and a small between-site heterogeneity, suggesting strong habitat filters (selection of species by environmental conditions) which might be associated with the prevalence of detritus-derived food. The occasionally flooded sites had the longest scatter along the first NMDS axis, indicating a local differentiation without a longitudinal gradient. The young forests that were occasionally inundated and those that were never flooded shared many species, resulting in the lack of significant differences based on the presence-absence data. The damp, regularly flooded forests differed from the occasionally inundated ones and the ones beyond the floodplain. Flooding introduces drift material and species to the sites. The drift is associated with an initially increased within-site heterogeneity. During the years after the flooding event, the within-site homogeneity of communities increases (suggesting local selection of species) in tandem with an increase in the between-site differences (local selection plus stochastic extinctions).

Key words
afforestation; drift dispersal; habitat fragmentation; introduced species; land use; snail fauna
References

Anhut U. 1977. Untersuchungen zur Molluskenfauna des Rechten Unteren Niederrheins im Raum zwischen Rees und Emmerich. Gewäss. Abwäss. 62/63: 17–62.
Barker G. M. 2004. Natural enemies of terrestrial molluscs. CABI, Wallingford. http://dx.doi.org/10.1079/9780851993195.0000
Bevilacqua S., Plicanti A., Sandulli R., Terlizzi A. 2012. Measuring more of β-diversity: Quantifying patterns of variation in assemblage heterogeneity. An insight from marine benthic assemblages. Ecol. Indic. 18: 140–148. http://dx.doi.org/10.1016/j.ecolind.2011.11.006
Bundesanstalt für Gewässerkunde 2015. Extremereignisse Rhein: Hochwasser, Niedrigwasser. http://undine.bafg.de (last viewed 01. Aug. 2015).
Cameron R. A. D., Pokryszko B. M. 2005. Estimating the species richness and composition of land mollusc communities: problems, consequences and practical advice. J. Conch. 38: 529–547.
Čejka T. 1997. Adaptive successional changes in malacocoenoses as a reaction to the changed hydrological conditions in the diversion area of the Gabcíkovo power plant (Slovakia, the Danube river). Biologia (Bratislava) 52: 615–623.
Čejka T., Hamerlík L. 2009. Land snails as indicators of soil humidity in Danubian woodland (SW Slovakia). Pol. J. Ecol. 57: 741–747.
Čejka T., Horsák M., Némethová D. 2008. The composition and richness of Danubian floodplain forest land snail faunas in relation to forest type. J. Mollus. Stud. 74: 37–45. http://dx.doi.org/10.1093/mollus/eym041
Dörge N., Walther C., Beinlich B., Plachter H. 1999. The significance of passive transport for dispersal in terrestrial snails. Z. Ökol. Natursch. 8: 1–10.
Fischer R., Granke O., Chirici G., Meyer P., Seidling W., Stofer S., Corona P., Marchetti M., Travaglini D. 2009. Background, main results and conclusions from a test phase for biodiversity assessments on intensive forest monitoring plots in Europe. Forest 2: 67–74. http://dx.doi.org/10.3832/ifor0493-002
Follner K., Henle K. 2006. The performance of plants, molluscs, and carabid beetles as indicators of hydrological conditions in floodplain grasslands. Intern. Rev. Hydrobiol. 91: 364–379. http://dx.doi.org/10.1002/iroh.200510890
Geyer D., le Roi O. 1912. Über Clausilien der Rheinprovinz. Sitzungsber. naturkdl. Ver. preuss. Rheinl. Westf. 1911: 33–42.
Hille A., Liebal K., Mosch B., Pellmann H., Schlegel M. 2003. An RAPD (Random Amplified Polymorphic DNA) analysis of genetic population structure of Balea biplicata (Gastropoda: Clausiliidae) in fragmented floodplain forests of the Elster/Saale riparian system. Biochem. Genetics 41: 175–199. http://dx.doi.org/10.1023/A:1023329711209
Horáčková J., Horsák M., Juřičková L. 2014. Land snail diversity and composition in relation to ecological variations in Central European floodplain forests and their history. Comm. Ecol. 15: 44–53. http://dx.doi.org/10.1556/ComEc.15.2014.1.5
Ilg C., Foeckler F., Deichner O., Henle K. 2009. Extreme flood events favour floodplain mollusc diversity. Hydrobiologia 621: 63–73. http://dx.doi.org/10.1007/s10750-008-9632-5
Kappes H. 2006. Relations between forest management and slug assemblages (Gastropoda) of deciduous regrowth forests. Forest Ecol. Managem. 237: 450–457. http://dx.doi.org/10.1016/j.foreco.2006.09.067
Kappes H., Lay R., Topp W. 2007. Changes in different trophic levels of litter-dwelling macrofauna associated with giant knotweed invasion. Ecosystems 10: 734–744. http://dx.doi.org/10.1007/s10021-007-9052-9
Kappes H., Jordaens K., Hendrickx F., Maelfait J.-P., Lens L., Backeljau T. 2009. Response of snails and slugs to fragmentation of NW European lowland forests. Landsc. Ecol. 24: 685–697. http://dx.doi.org/10.1007/s10980-009-9342-z
Kappes H., Schilthuizen M. 2014. Habitat effects on slug assemblages and introduced species. J. Mollus. Stud. 80: 47–54. http://dx.doi.org/10.1093/mollus/eyt043
Kappes H., Kopeć D., Sulikowska-Drozd A. 2014. Influence of habitat structure and conditions in floodplain forests on mollusc assemblages. Pol. J. Ecol. 62: 777–788. http://dx.doi.org/10.3161/104.062.0416
Kerkhoff C. 1989. Untersuchungen an Gastropoden­zönosen von Auenwäldern in Süd­deutschland. Dis­sertation, University Ulm.
Kobialka H., Schwer H., Kappes H. 2009. Rote Liste der gefährdeten Schnecken und Muscheln (Mollusca: Gastropoda et Bivalvia) in Nordrhein-Westfalen. 3. Fassung 2009. Mitt. dtsch. malakozool. Ges. 82: 3–30.
Körnig G. 1966. Die Molluskengesellschaften des mitteldeutschen Hügellandes. Malakozool. Abh. 2: 1–112.
Küster H. 1999. Geschichte der Landschaft in Mitteleuropa. Verlag C.H. Beck, München.
Künkel K. 1930. Ausdauer der Landpulmonaten im Wasser. Arch. Moll. 62: 116–123.
LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz NRW) 2015. Klimaatlas NRW. www.klimaatlas.nrw.de (last viewed 01. Aug. 2015).
LUBW (Ed.) 2010. Lebendige Rheinauen. Natur, Kultur und LIFE am nördlichen Oberrhein. Verlag Regionalkultur, Heidelberg.
Magurran A. E. 2005. Species abundance distributions: pattern or process? Funct. Ecol.19: 177–181. http://dx.doi.org/10.1111/j.0269-8463.2005.00930.x
Markwith S. H., Mezza G., Kennard S. N., Bousquin S. G. 2014. Intra-floodplain seed dispersal limitation and wetland community restoration. Ecol. Restor. 32: 249–259. http://dx.doi.org/10.3368/er.32.3.249
Martin K., Sommer M. 2004. Relationships between land snail assemblage patterns and soil properties in temperate-humid forest ecosystems. J. Biogeogr. 31: 531–545. http://dx.doi.org/10.1046/j.1365-2699.2003.01005.x
McGill B. J., Etienne R. S., Gray J. S., Alonso D., Anderson M. J., Benecha H. K., Dornelas M., Enquist B. J., Green J. L., He F., Hurlbert A. H., Magurran A. E., Marquet P. A., Maurer B. A., Ostling A., Soykan C. U., Ugland K. I., White E. P. 2007. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Letters 10: 995–1015. http://dx.doi.org/10.1111/j.1461-0248.2007.01094.x
Myšák J., Horsák M. 2011. Floodplain corridor and slope effects on land mollusc distribution patterns in a riverine valley. Acta Oecol. 37: 146–154. http://dx.doi.org/10.1016/j.actao.2011.01.012
Řepka R., Šebesta J., Maděra P., Vahalík P. 2015. Comparison of the floodplain forest floristic composition of two riparian corridors: species richness, alien species and the effect of water regime changes. Biologia (Bratislava) 70: 208–217. http://dx.doi.org/10.1515/biolog-2015-0021
Säumel I., Kowarik I. 2010. Urban rivers as dispersal corridors for primarily wind-dispersed invasive tree species. Landsc. Urban Planning 94: 244–249. http://dx.doi.org/10.1016/j.landurbplan.2009.10.009
Schnitzler A. 1994. Conservation of biodiversity in alluvial hardwood forests of the temperate zone: the example of the Rhine valley. Forest Ecol. Manag. 68: 385–398. http://dx.doi.org/10.1016/0378-1127(94)90059-0
Steusloff U. 1950. Clausilien auf den unteren Terrassen des Niederrheines. Arch. Moll. 79: 45–54.
Stern S., Kappes H., Renker C. 2014. Einblicke in die Molluskenfauna des NSG „Mombacher Rheinufer“ (Mollusca: Gastropoda & Bivalvia). Mainzer Naturwiss. Arch. 51: 259–276.
Sulikowska-Drozd A., Maltz T. K., Kappes H. 2013. Brooding in a temperate zone land snail: seasonal and regional patterns. Contr. Zool. 82: 85–94.
Thébauld C., Debussche M. 1991. Rapid invasion of Fraxinus ornus L. along the Hérauld river system in Southern France. The importance of seed dispersal by water. J. Biogeogr. 18: 7–12. http://dx.doi.org/10.2307/2845240
Thomas J. R., Middleton B., Gibson D. J. 2006. A landscape perspective of the stream corridor invasion and habitat characteristics of an exotic (Dioscorea oppositifolia) in a pristine watershed in Illinois. Biol. Invas. 8: 1103–1113. http://dx.doi.org/10.1007/s10530-005-8155-5
Warwick R. M., Clarke K. R. 1993. Increased variability as a symptom of stress in marine communities. J. Experim. Marine Biol. Ecol. 172: 215–226. http://dx.doi.org/10.1016/0022-0981(93)90098-9
Wedel J. 1999. Die Molluskenfauna zweier Rheinauen des südlichen und nördlichen Oberrheingebietes. Carolinea 57: 65–92.
Whittaker R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30: 280–338. http://www.jstor.org/stable/1943563
Wilson D. S. 1992. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73: 1984–2000. http://www.jstor.org/stable/1941449

Folia Malacologica (2016) 24: 9-24
First published on-line: 2016-02-08 00:00:00
http://dx.doi.org/10.12657/folmal.024.002
Full text (.PDF) BibTeX Mendeley Back to list