Shell polymorphism in the land-snail Cepaea nemoralis (L.) along a West-East transect in continental Europe

Małgorzata Ożgo, e-mail: mozgo.biol@interia.pl

Institute of Biology, Pomeranian University, Arciszewskiego 22B, 76-200 Słupsk, Poland
Abstract

The present study analyses variation in morph frequencies of C. nemoralis along a west-east transect spanning the whole range of the species in continental Europe. The transect passed along the 52°N parallel from the North Sea coast in the Netherlands to the Bug River in Poland (1,215 km). Samples were collected at the crossings of the parallel with consecutive meridians, within the radius of 15 km from the crossing point. The material comprises 27,666 individuals from 235 populations. C. nemoralis occurred along the whole transect, but was much more common and abundant in its eastern part. In large areas of the western part of the study area it was extremely rare and unabundant, indicating the severity of human impact on the environment, posed especially by industrial agriculture. Variation in morph frequencies did not show clear overall trends; there were some regularities but for the most part they did not coincide with large-scale climatic parameters. There were two significant trends: pink and mid-banded tended to increase eastwards and correlated positively with the measures of continentality. While the trend for mid-banded might be explicable on the grounds of climatic selection, for pink it is directly contrary to expectations and contrasts with the patterns of spatial distribution and temporal chan August 12ges in other parts of Europe. Probably, the distribution of morph frequencies reflects foremost the founding events occurring during colonisation of novel habitats and range ex- pansion. Contrary to the large-scale variation, the habitat effect consistent with the climatic selection hypothe- sis was observed along the whole transect, with light shells being more frequent in open than in shaded habitats. As thrush anvils were rare in the study area, and in places where they were present no evidence of selective predation was found, this morph distribution resulted most probably from microclimatic selection. C. nemoralis inhabited predominantly anthropogenic, short-lived habitats, and a clear habitat effect observed throughout the study area indicates a high rate of adaptation of populations of this species to environmental conditions. Although expected on theoretical grounds, there was no decrease in the level of polymorphism towards the limits of the species range, and the differences between open and shaded habitats were not consistent in direction. The probable explanation lies with the fact that the current limits of the distribution of this species in continental Europe are not really ecologically marginal. Additionally, the specific mating system protects populations of this species from the impoverishment of the gene pool. Linkage disequilibria were common in the study area. Tight linkage between the loci controlling the colour of the shell and the presence or absence of banding limits the scope of genotypes available to selection, and might be one of the reasons why different populations adapt along different genetic routes to similar environmental conditions. This is probably an additional factor contributing to the maintenance of polymorphism in this strikingly variable species.

Key words
adaptation; climatic selection; evolutionary ecology; founder effects; microclimate; natural selection; range expansion; microevolution
References

Arnold R. W. 1968. Studies on Cepaea.  VII. Climatic selection in Cepaea nemoralis  in the Pyrenees. Phil. Trans. Roy. Soc. London B 253: 549–593. 

Bantock C. R., Price D. J. 1975. Marginal populations of Cepaea nemoralis (L.) on the Brandon Hills, England. I. Ecology and ecogenetics. Evolution 29: 267–277. 

Bell G. 2007. Selection. The mechanism of evolution. Oxford University Press, New York. 

Bromham L. 2008. Reading the story in DNA. Oxford University Press, New York.

Brooks R. 2002. Variation in female mate choice within guppy populations: population divergence, multiple ornaments and the maintenance of polymorphism. Genetica 116: 343–358. 

Burla H., Gosteli M. 1993. Thermal advantage of pale colored mophs of the snail Arianta arbustorum (Helicidae, Pulmonata) in Alpine habitats. Ecography 16: 345–350. 

Caesar S., Ahnesjö J., Forsman A. 2007. Testing the role of coadapted genes versus bet hedging for mating strategies in colour polymorphic pygmy grasshoppers. Biol. J. Linn. Soc. 90: 491–499. 

Cain A. J. 1977. The uniqueness of the polymorphism of Cepaea (Pulmonata: Helicidae) in western Europe. J. Conch. 29: 129–136.

Cain A. J. 1983. Ecology and ecogenetics of terrestrial molluscan populations. In: Russell-Hunter W. D. (ed.) The Mollusca. Vol. 6. Ecology, Academic Press, New York, pp. 597–647.

Cain A. J., Currey J. D. 1963. Differences in interactions between selective forces acting in the wild on certain pleiotropic genes of Cepaea. Nature 197: 411–412. 

Cain A. J., King J. M. B., Sheppard P. M. 1960. New data on the genetics of polymorphism in the snail Cepaea nemoralis L. Genetics 45: 393–411. 

Cain A. J., Sheppard P. M. 1950. Selection in the polymorphic land snail Cepaea nemoralis. Heredity 4: 275–294. 

Cain A. J., Sheppard P. M. 1954. Natural selection in Cepaea. Genetics 39: 89–116.

Cameron R. A. D. 1997. Cepaea research 1900–1950: too many problems for a solution? Arch. Nat. Hist. 25: 401–412. 

Cameron R. A. D. 2001. Cepaea nemoralis in a hostile environment: continuity, colonizations and morph-frequencies over time. Biol. J. Linn. Soc. 74: 255–264. 

Cameron R. A. D., Cook L. M. 2012. Habitat and the shell polymorphism of Cepaea nemoralis (L.): interrogating the Evolution Megalab database. J. Moll. Stud. 

Cameron R. A. D., Ożgo M., Horsák M., Bogucki Z. 2011. At the north-eastern extremity: variation in Cepaea nemoralis around Gdańsk, northern Poland. Biologia 66: 1097–1113. 

Cameron R. A. D., Pannett D. J. 1985. Interaction between area effects and variation with habitat in Cepaea. Biol. J. Linn. Soc. 24: 365–379. 

Cameron R. A. D., Pokryszko B. M. 2008. Variation in Cepaea populations over 42 years: climate fluctuations destroy a topographical relationship of morph-frequencies. Biol. J. Linn. Soc. 95: 53–61. 

Cameron R. A. D., Pokryszko B. M., Horsák M. 2009. Contrasting patterns of variation in urban populations of Cepaea (Gastropoda: Pulmonata): a tale of two cities. Biol. J. Linn. Soc. 97: 27–39. 

Chang H.-W. 1991. Activity and weight loss in relation to solar radiation in the polymorphic land snail Cepaea nemoralis. J. Zool. (Lond.) 255: 213–225. 

Clarke B. C. 1960. Divergent effects of natural selection on two closely-related polymorphic snails. Heredity 14: 423–443. 

Clarke B. C., Arthur W., Horsley D. T., Parkin D. T. 1978. Genetic variation and natural selection in pulmonate snails. In: Fretter V., Peake J. (eds). Pulmonates. Academic Press, New York, pp. 220–270. 

Clarke B. C., Murray J. J. 1962a. Changes in gene frequency in Cepaea nemoralis (L.). Heredity 17: 445–465.  

Clarke B. C., Murray J. J. 1962b. Changes in gene frequency in Cepaea nemoralis (L.); the estimation of selective values. Heredity 17: 467–476. 

Cook L. M. 1998. A two-stage model for Cepaea polymorphism. Phil. Trans. R. Soc. Lond. B 353: 1577–1593. 

Cook L. M. 2005. Disequilibrium in some Cepaea populations. Heredity 94: 497–500. 

Cook L. M. 2008. Variation with habitat in Cepaea nemoralis: the Cain & Sheppard diagram. J. Moll. Stud. 74: 239–243. 

Cook L. M., King J. M. B. 1966. Some data on the genetics of shell-character polymorphism in the snail Arianta arbustorum. Genetics 53: 415–425. 

Cook L. M., Pettit C. W. A. 1998. Morph frequencies in the snail Cepaea nemoralis: changes with time and their interpretation. Biol. J. Linn. Soc. 64: 137–150.

Dvořák L., Honek A. 2004. The spreading of the Brown Lipped Snail, Cepaea nemoralis, in the Czech Republic. J. Nat. Mus., Nat. Hist. Ser. 173: 97–103.

Ellers J., Boggs C. L. 2002. The evolution of wing color in Colias butterflies: heritability, sex linkage, and population divergence. Evolution 56: 836–840.

Ellers J., Boggs C. L. 2004. Functional ecological implications of intraspecific differences in wing melanization in Colias butterflies. Biol. J. Linn. Soc. 82: 79–87. 

Endler J. A. 1986. Natural selection in the wild. Princeton University Press, Princeton, New Jersey. 

Forsman A. 1995. Opposing fitness consequences of colour pattern in male and female snakes. J. Evol. Biol. 8: 53–70

Futuyma D. 2005. Evolutionary Biology. Sinauer Associates, Inc. Sunderland, Massachusetts. 

Gamble S., Lindholm A. K., Endler J. A., Brooks R. 2003. Environmental variation and the maintenance of polymorphism: the effect of ambient light spectrum on mating behaviour and sexual selection in guppies. Ecol. Lett. 6: 463–472. 

Gaston K. J., Fuller R. A. 2007. Biodiversity and extinction: losing the common and the widespread. Prog. Phys. Geogr. 31: 213–225. 

Gaston K. J., Fuller R. A. 2008. Commonness, population depletion and conservation biology. Trends Ecol. Evol. 23: 14–19. 

Goodhart C. B. 1956. Genetic stability in populations of the polymorphic snail, Cepaea nemoralis (L.).  Proc. Linn. Soc. London 167: 50–67. 

Goodhart C. B. 1958. Genetic stability in populations of the polymorphic snail, Cepaea nemoralis (L.): a further example.  Proc. Linn. Soc. London 169: 163–167. 

Goodhart C. B. 1987. Why are some snails visibly polymorphic and others not? Biol. J. Linn. Soc. 31: 35–58. 

Gosden T. P., Stoks R., Svensson E. I. 2011. Range limits, large-scale biogeographic variation, and localized evolutionary dynamics in a polymorphic damselfly. Biol. J. Linn. Soc. 102: 775–785. 

Guerrucci-Henrion M. A. 1966. Recherches sur les populations naturelles de Cepaea nemoralis en Bretagne. Arch. Zool. Exp. Gen. 107: 369–417.

Harley C. D. G., Pankey M. S., Wares J. P., Grosberg R. K., Wonham M. J. 2006. Color polymorphism and genetic structure in the sea star Pisaster ochraceus. Biol. Bull. 211: 248–262. 

Heath D. J. 1975. Colour, sunlight and internal temperatures in the land snail Cepaea nemoralis (L.). Oecologia (Berl.) 19: 29–38. 

Hoekstra H. E., Krenz J. G., Nachman M. W. 2005. Local adaptation in the rock pocket mouse (Chaetodipus intermedius): natural selection and phylogenetic history of populations. Heredity 94: 217–228. 

Honek A. 1995. Geographic distribution and shell colour and banding polymorphism in marginal populations of Cepaea nemoralis (Gastropoda, Helicidae). Malacologia 37: 111–122.

Ibrahim K. M., Nichols R. A., Hewitt G. M. 1996. Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77: 282–291. 

Jones J. S. 1973. Ecological genetics and natural selection in molluscs. Science 1182: 546–552. 

Jones J. S., Leith B. H., Rawlings P. 1977. Polymorphism in Cepaea: a problem with too many solutions? Ann. Rev. Ecol. Syst. 8: 109–143. 

Kark S., Warburg I., Werner Y. L. 1997. Polymorphism in the snake Psammophis schokari on both sides of the desert edge in Israel and Sinai. J. Arid Env. 37: 513–527. 

Kerney M. P., Cameron R. A. D. 2006. Guide des escargots et limaces d’Europe. Delachaux et Niestlé, Paris.

Krzanowska H., Łomnicki A., Rafiński J. 1982. Wprowadzenie do genetyki populacji. PWN, Warszawa.

Krzanowska H., Łomnicki A., Rafiński J., Szarski H., Szymura J. M. 2002. Zarys mechanizmów ewolucji. PWN, Warszawa.

Lamotte M. 1954. Sur le déterminisme génétique du polymorphisme chez Cepaea nemoralis L.  C. R. Acad. Sci. 239: 365–367.

Lamotte M. 1959. Polymorphism of natural populations of Cepaea nemoralis.  Cold Spring Harbor Symp. Quant. Biol. 34: 65–86. 

Lindstedt C., Lindström L., Mappes J. 2009. Thermoregulation constrains effective warning signal expression. Evolution 63: 469–478. 

McKillup S. C., McKillup R. V. 2008. Apostasy and selection for crypsis in the marine snail Littoraria filosa: an explanation for a balanced colour polymorphism. Biol. J. Linn. Soc. 95: 62–71. 

Millstein R. L. 2008. Distinguishing drift and selection empirically: “The Great Snail Debate” of the 1950s. J. Hist. Biol. 41: 339–367. 

Millstein R. L. 2009. Concepts of drift and selection in “The Great Snail Debate” of the 1950s and Early 1960s. Trans. Am. Phil. Soc. 99: 271–298.

Mullen L. M., Vignieri S. N., Gore J. A., Hoekstra H. E. 2009. Adaptive basis of geographic variation: genetic, phenotypic and environmental differences among beach mouse populations. Proc. R. Soc. Lond. B 276: 3809–3818. 

Murray J. J. 1964. Multiple mating and effective population size in Cepaea nemoralis. Evolution 18: 283–291. 

Murray J. J. 1975. The genetics of mollusca. In: King R. C. (ed.). Handbook of genetics. Vol. 3, Plenum, New York, pp. 3–31.

Nosil P. 2009. Adaptive population divergence in cryptic color-pattern following a reduction in gene flow. Evolution 63: 1902–1912. 

Ożgo M. 2005a. Polimorfizm wstężyka gajowego (Cepaea nemoralis L.): od selekcji wizualnej po zmienność molekularną. Przegl. Zool. 49: 7–30.

Ożgo M. 2005b. Cepaea nemoralis (L.) in southeastern Poland: association of morph frequencies with habitat. J. Moll. Stud. 71: 93–103. 

Ożgo M. 2008. Current problems in the research of Cepaea polymorphism. Folia Malacol. 16: 55–60. 

Ożgo M. 2011. Rapid evolution in unstable habitats: a success story of the polymorphic land snail Cepaea nemoralis (Gastropoda: Pulmonata). Biol. J. Linn. Soc. 102: 251–262. 

Ożgo M., Bogucki Z. 2006. Shell predation and cannibalism in land snails living on acid and calcium-deficient soils. Folia Malacol. 14: 217–220. 

Ożgo M., Bogucki Z. 2011. Colonization, stability, and adaptation in a transplant experiment of the polymorphic land snail Cepaea nemoralis (Gastropoda: Pulmonata) at the edge of its geographical range. Biol. J. Linn. Soc. 104: 462–470. 

Ożgo M., Kinnison M. T. 2008. Contingency and determinism during convergent contemporary evolution in the polymorphic land snail, Cepaea nemoralis. Evol. Ecol. Res. 10: 721–733. 

Ożgo M., Komorowska A. 2009. Shell banding polymorphism in Cepaea vindobonensis in relation to habitat in south-eastern Poland. Malacologia 51: 81–88. 

Ożgo M., Schilthuizen M. 2011. Evolutionary change in Cepaea nemoralis shell colour over 43 years. Global Change Biol. 

Ramos M. A. 1985. Shell polymorphism in a southern peripherial population of Cepaea nemoralis (L.) (Pulmonata: Helicidae) in Spain. Biol. J. Linn. Soc. 25: 197–208. 

Richards A. V., Murray J. J. 1975. The relation of phenotype to habitat in an introduced colony of Cepaea nemoralis. Heredity 34: 128–131. 

Richardson A. M. M. 1974. Differential climatic selection in natural populations of the land snail Cepaea nemoralis. Nature 247: 572–573. 

Riedel A. 1988. Ślimaki lądowe. Gastropoda terrestria. Katalog Fauny Polski 36. PWN, Warszawa.

Rotarides M. 1926. Uber die Bandervariation von Cepaea vindobonensis Fer. Zool. Anz. 67: 28–44.

Schilthuizen M. 2001. Frogs, flies and dandelions. Speciation – The Evolution of New Species. Oxford University Press, New York. 

Sheppard P. M. 1951. Fluctuations in the selective value of certain phenotypes in the polymorphic land snail Cepaea nemoralis (L.). Heredity 5: 125–134. 

Silvertown J., Cook L., Cameron R., Dodd M., McConway K., Worthington J., Skelton P., Anton C., Bossdorf O., Baur B., Schilthuizen M., Fontaine B., Sattmann H., Bertorelle G., Correia M., Oliveira C., Pokryszko B., Ożgo M., Stalažs A., Gill E., Rammul Ü., Sólymos P., Féher Z., Juan X. 2011. Citizen science reveals unexpected continental-scale evolutionary change in a model organism. PLoS ONE 6: e18927. 

Simpson E. H. 1949. The measurement of diversity. Nature 163: 688. 

Soulé M. 1973. The epistatsis cycle: a theory of marginal populations. Annu. Rev. Ecol. Styst. 4: 165–187. 

Sulikowska-Drozd A. 2008. Ślimakowate (Helicidae). In: Bogdanowicz W., Chudzicka E., Pilipuk I., Skibińska E. (eds). Fauna of Poland – characteristics and checklists of species. Vol. 3, Muzeum i Instytut Zoologii PAN, Warszawa, pp. 399–400.

Sverlova N. 2002. Einschleppung und Polymorphismus der Cepaea-Arten am Beispiel von Lwow in der Westukraine (Gastropoda: Pulmonata: Helicidae). Malak. Abh. 20: 267–274.

Tanaka K. 2007. Thermal biology of a colour-dimorphic snake, Elaphe quadrivirgata, in a montane forest: do melanistic snakes enjoy thermal advantages? Biol. J. Linn. Soc. 92: 309–322. 

Tilling S. M. 1985a. The effect of interspecific interaction on spatial distribution patterns in experimental populations of Cepaea nemoralis (L.) and C. hortensis (Muell.). Biol. J. Linn. Soc. 24: 71–81. 

Tilling S. M. 1985b. The effects of density and interspecific interaciton of mortality in experimental populations of adult Cepaea (Held.). Biol. J. Linn. Soc. 24: 61–70. 

Trullas S. C., van Wyk J. H., Spotila J. R. 2007. Thermal melanism in ectotherms. J. Therm. Biol. 32: 235–245. 

Unsicker S. B., Köhler G., Linz J., Stein C., Weisser W. W. 2008. Colour morph related performance in the meadow grasshopper Chorthippus parallelus (Orthoptera, Acrididae). Ecol. Entomol. 33: 631–637. 

Vences M., Galan P., Vieites D. R., Puente M., Oetter K., Wanke S. 2002. Field body temperatures and heating rates in a montane frog population: the importance of black dorsal pattern for thermoregulation. Ann. Zool. Fenn. 39: 209–220. 

Wagner A. 1990. Linkage disequilibrium in Cepaea nemoralis (L.) in Poland. Genetica Polonica 31: 223–228.

Wang I. J., Shaffer H. B. 2008. Rapid color evolution in an aposematic species: a phylogenetic analysis of color variation in the strikingly polymorphic strawberry poison-dart frog. Evolution 62: 2742–2759. 

Williamson P. 1979. Age determination of juvenile and adult Cepaea. J. Moll. Stud. 45: 52–60. 

Wolda H. 1963. Natural populations of the polymorphic land snail Cepaea nemoralis (L.). Arch. Neerl. Zool. 15: 381–471. 

Wolda H. 1965. Some preliminary observations on the distribution of the various morphs within natural populations of the polymorphic landsmail Cepaea nemoralis (L.). Arch. Neerl. Zool. 16: 280–292. 

Wolda H. 1969. Genetics of polymorphism in the land snail, Cepaea nemoralis. Genetica 40: 475–502. 

Woolbright L. L., Stewart M. M. 2008. Spatial and temporal variation in color pattern morphology in the tropical frog Eleutherodactylus coqui. Copeia 2: 431–437. 

Wright S. 1978. Evolution and the genetics of populations vol. 4. Variability within and among natural populations. University of Chicago Press, Chicago, IL.

Folia Malacologica (2012) 20: 181-253
First published on-line: 2012-08-12 00:00:00
http://dx.doi.org/10.2478/v10125-012-0015-1
Full text (.PDF) BibTeX Mendeley Back to list